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Abstract Light transport simulation is a popular approach for rendering photorealistic
images. Because we solve the same governing equations for light transport, different
algorithms all converge to the same result. However, since different algorithms have
different efficiencies depending on input scene configurations, a user often selects the
most efficient algorithm based on trials and errors. This selection of an algorithm can
be cumbersome because a user needs to know technical details of each algorithm. We
propose a framework which blends the results of two different rendering algorithms,
such that a blending weight per pixel becomes automatically larger for a more
efficient algorithm. Our framework utilizes a popular machine learning technique,
regression forests, for analyzing statistics of outputs of rendering algorithms and
then generating an appropriate blending weight for each pixel. The key idea is to
determine blending weights based on classification of path types. This idea is inspired
by the same common practice in movie industries; an artist composites multiple
rendered images where each image contains only a part of light transport paths (e.g.,
caustics) rendered by a specific algorithm. Since our framework treats each algorithm
as a black-box, we can easily use very different rendering algorithms as long as
they are based on light transport simulation. The blended results with our algorithm
are almost always more accurate than taking the average, and never worse than the
results with an inefficient algorithm alone.
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1 Introduction

Rendering based on light transport simulation is a popular approach for photorealistic
image synthesis. Since such rendering algorithms solve the same governing equations
(e.g., the rendering equation [Kaj86]), rendering with light transport simulation
should give us the same result regardless of the choice of an algorithm. It is however
well known that some algorithms are more efficient at rendering certain light transport
effects. For example, photon density estimation [Jen96; HOJ08] is often efficient at
rendering caustics, and Markov chain Monte Carlo algorithms [VG97; JM12] are
considered efficient at resolving complex occlusions.

Because of the varying efficiency of different algorithms on different light trans-
port effects, it is common practice to select an algorithm based on the type of light
transport effect that one wants to render. In the movie industry, an artist often de-
composes light transport effects into separate images, renders each with a most
efficient algorithm, and composites the resulting images into the final one. Selecting
appropriate algorithms and composting the results, however, can be difficult and
cumbersome tasks. For selection, an artist either needs to know why some algorithms
work well for some effects, or briefly tries all the available algorithms to see which
one works well. For composition, an artist also needs to pay attention not to double
count a certain type of paths such as caustics.

We propose a framework which automates this selection of the algorithms and
composition of the resulting images. Our work is inspired by the ultra-human per-
formance of recent machine learning algorithms on classification tasks. We apply
the same idea to select and composite two different rendering algorithms based
on the classification of light transport effects. To be concrete, we use regression
forests [Bre01] to learn the relationship between blending weights that minimize
the error and the classification of light transport effects. While multiple importance
sampling [VG94] also allows us to blend results of different rendering techniques, the
key difference is that our framework treats each rendering algorithms as a black-box.
Accordingly, our framework can be easily applied to very different algorithms such
as SPPM and MLT without any algorithmic or theoretical modifications for each. To
summarize, our contributions are:

• Use of machine learning to automatically blend the results of different rendering
algorithms based on path types.

• Blending framework which is independent from how the underlying rendering
algorithms work.

• First successful application of regression forests for light transport simulation.
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Fig. 1 General idea of blending the results of two different rendering algorithms using regression
forests. In the training phase (left), we first calculate the optimal blending weight per pixel, given the
reference image and rendered images with different approaches. These weights and the correspond-
ing path features become one training sample for the regression forest for each scene. We iterate this
process for various scenes. Our framework thus learns the relationship between input path features
and optimal weights during this learning phase. At runtime (right), the trained regression forest
returns approximated optimal blending weights based on path features of a new scene.

2 Overview

Our goal is to blend the results of two different rendering algorithms such that the
error of the blended result is as small as possible. Our algorithm is separated into
two phases; the training phase and runtime. Fig. 1 illustrates the algorithm.

In the training phase, we use regression forests [Bre01] to learn the relationship
between a feature vector of lighting effects extracted from the rendered images and
the optimal weights for blending. For each training scene, we render the reference
solution, and the two images with both algorithms under the same rendering time.
Based on the rendered images, we extract path features as the relative pixel contribu-
tions of different light transport paths according to the Heckbert’s notation [Hec90].
Modern shader languages often support the same mechanism. We then calculate
the optimal blending weights based on the reference solution and the results of the
two different rendering algorithms. The optimal blending weight is defined so that
the error of the blended result is minimized at each pixel. A pair of path features
and the optimal blending weight forms one training sample for regression forests.
If a rendering algorithm is based on Monte Carlo methods (which is the case in our
experiments), we generate multiple training samples for the same scene in order to
avoid the influence of this randomness of rendered images.

At runtime, we use the trained regression forest to approximate the optimal
blending weights for a given new scene. The path features extracted from the rendered
images are used to traverse the regression forest to obtain the blending weights. The
final result is a blended image with the obtained weights. Since the trained regression
forest expresses the relationship between path features and the optimal weights, a
blended image is expected to have small error, even for a scene that was not included
in the training phase.
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3 Automatic Blending with Path Features

Path Features: Our definition of a feature vector for rendering algorithms is
inspired by how artists decompose a rendered image into several images with specific
lighting effects for each. In order to define the feature, we begin with the formulation
of the light transport known as the path integral formulation [Vea98]. According to
the formulation, the pixel intensity I observed at each pixel is expressed as

I =
∫

Ω

f (x̄)dµ(x̄), (1)

where x̄ is a light transport path, f is the measurement contribution function, and µ

is the path measure. Ω is the space of paths with all different lengths.
The path space Ω can be decomposed into a union of disjoint spaces according to

the classification by Heckbert [Hec90]:

Ω = ΩLDE∪ΩLSE∪ΩLDSE∪ΩLSDE∪·· · , (2)

where each Ω∗ is a subspace of Ω defined with the paths represented by the Heck-
bert’s notation ∗. For instance, the subspace ΩLDSE is defined as a set of paths
x̄ = x0x1x2x3 where x0 is on a sensor, x1 is on a diffuse surface, x2 is on a specular
surface, and x3 is on an emitter. A glossy interaction is classified to either D or S
depending on its BRDF.

We thus define a part of the intensity I∗ contributed only with the subspace Ω∗ as

I∗ =
∫

Ω∗
f (x̄)dµ(x̄). (3)

Since the decomposition in Equation 2 is disjoint, the pixel intensity I is

I = ILDE + ILSE + ILDSE + ILSDE + · · · . (4)

We thus define the path features φ as a vector of the intensities I∗ relative to I:

φ ≡ (ILDE, ILSE, ILDSE, ILSDE, . . .)

I
. (5)

The definition uses relative intensities so that φ is independent from the absolute
intensity. We fixed the maximum path length to ten, which makes φ a 2(10−1) =
512 dimensional feature vector. The training phase uses an estimate φ̂ instead of
the analytical value of φ for a given rendering time. We selected the number of
dimensions such that all the data fits within the main memory. For instance, the scene
rendered with 720p resolution requires a storage of 1.8GB.
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3.1 Optimal Blending Weights

In the training phase, we need to determine the optimal blending weight. This weight
is used as an answer associated with a path feature vector. A pair of a path feature
vector and the optimal blending weight thus becomes a training sample for supervised
learning via regression forests.

We define the optimal blending weight wopt that gives the minimum error as

wopt = argmin
w

∣∣(wÎα +(1−w)Îβ

)
− I
∣∣ , (6)

where Îα and Îβ are the results of two different rendering algorithms α and β

respectively, and I is the reference solution. This equation can be easily solved as

wopt =
I− Îβ

Îα − Îβ

. (7)

The solution of Equation 6, that is not in the range [0,1], is clamped to the nearest
side so that wopt ∈ [0,1]. We apply this clamping so that the blending operation
becomes a convex combination of the results. The blended result wÎα +(1−w)Îβ is
more accurate than one of Îα and Îβ since

|wÎα +(1−w)Îβ − I| ≤max(|Îα − I|, |Îβ − I|) (8)

by definition if w ∈ [0,1]. Intuitively, this clamping process sets wopt = 1 when Îα

and Îβ both either underestimate or overestimate I and Îα is closer to I (vice versa for
Îβ ). If one of the Îα and Îβ underestimates and the other overestimates I, we set wopt
so that the blended result is exactly equal to I. Note that Equation 8 only guarantees
an error per pixel does not become worse, not the sum of errors over an image. For
example, collecting pixels with worse errors (with w = 0 or w = 1) still satisfies
Equation 8, but the sum of errors would increase.

The intensities Îα and Îβ are the relatively rough estimates of I in practice. If an
algorithm is based on Monte Carlo ray tracing, an estimated intensity is an instance
of the random variable for each run. Using samples only from a single run of the
algorithm causes overfitting to this specific run. For example, it might be that Îα

happens to be closer to I than Îβ for the single run used in the training phase.
In order to deal with this issue, we use multiple training samples even for the

same scene and the same algorithm. In fact, machine learning techniques (including
regression forests) are naturally designed for dealing with such variations in the
training data.

Problem Statement: Given the definitions above, the goal of our algorithm is to
find a function wapprox so that

wopt ≈ wapprox(φ), (9)
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for given path features φ and two rendering algorithms α and β . This function wapprox
basically expresses the preference of the algorithm α over the other algorithm β for
paths with a feature vector of φ . In order to learn wapprox, we use a machine learning
algorithm called regression forests.

4 Regression Forests

The basic idea of regression forests is to use a set of binary trees for approximating
a multivariate function of the feature vector. This multivariate function expresses
the relationship between feature vectors and the corresponding value. Each binary
tree is called a regression tree where the inner nodes (split nodes) express branching
conditions on an input feature vector. Each regression tree takes an input feature
vector and outputs a value associated with the corresponding leaf node. Regression
forests return the average from regression trees as the final output.

4.1 Construction

For construction of regression forests, we need a large number of training samples
which associate feature vectors (a set of path features) and output values (optimal
weights). We generate these samples by rendering the several training scenes. We
then extract the path features and the corresponding optimal weights for each scene.
The regression forest is trained to approximate the optimal weights even for a new
scene, based only on the path features.

We define a training sample t ≡ (φ t ,wt
opt) ∈T as a tuple of path features φ t and

the optimal weight wt
opt. T is a set of all training samples. The construction process

begins from the root node of the regression forest. Each step of the construction
process recursively splits training samples into left and right nodes. We denote the
subset of the training samples in the currently processed node as T ⊆T and we start
from T = T . The algorithm is similar to a top-down construction of a kd-tree for
ray tracing [Hav00].

Node Splitting: The construction process continues splitting the current node
until the number of training samples in the current set T is smaller than a threshold,
or the depth of the tree has reached the maximum depth. If the recursion terminates,
the current node becomes a leaf node. Each leaf node stores the average over the set
of the optimal weights in this node as wleaf. This average weight approximates the
optimal weight at runtime.

If the recursion continues, we split the current set of samples T into two disjoint
subsets TL and TR according to a threshold θ and an index k of the path features:

TL(θ ,k) = {t ∈ T |φ t(k)≥ θ} (10)
TR(θ ,k) = T \TL(θ ,k) (11)
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where φ t(k) is the k-th element of the path features φ t . The threshold θ and the index
k at each step are defined as (θ ,k) = argmaxθ ′,k′V (θ ′,k′,T ), where V (θ ′,k′,T ) =
Var(T )−Var(TL(θ

′,k′))−Var(TR(θ
′,k′)). Here Var(T ) is the variance of the optimal

weights in T . The function V i used to define the most discriminative pair of the
threshold θ and the index of the path feature k according to the variance

4.2 Runtime

At runtime, we evaluate a regression tree with the input path features by traversing
down each split node to left or right according to the branching condition defined in
Equation 10. Each branching condition is a comparison between an element of the
input feature vector and the threshold value. Traversal eventually reaches to a leaf
node which contains the learned blending weight.

In our framework, we first render a given new scene with two different algorithms
Îα and Îβ with the same computation time. We also extract the path features φ

according to the definition by Equation 5. Using this path features, we can now
evaluate each trained regression tree by traversing down the tree, which eventually
reaches to a leaf node and the weight wleaf is recorded in the leaf node. By repeating
this process for all regression trees in the trained regression forest, we obtain a set
of weights wleaf recorded in the leaf nodes for each tree. We define wr(φ) as the
output of the r-th tree in the trained regression forest, given the path features φ . The
approximated optimal weight wapprox(φ) with M trees is given as

wapprox(φ) =
1
M

M

∑
r=1

wr(φ). (12)

Blending at each pixel is wapprox(φ)Îα +(1−wapprox(φ))Îβ . This evaluation process
is repeated for all the pixels. The use of forests can alleviate the discontinuity of the
resulting weights. Even if one tree suddenly returns a totally different value due to
hard classification, it is likely that other trees still return same weights. As a result,
returning weights will be smoothly changing.

4.3 Refinement

A trained regression forest is sometimes too optimized for given training samples.
In order to reduce overfitting, we follow the refinement technique for regression
forests proposed by Ren et al. [RCWS14] and Ladický et al. [LJS∗15]. The main
idea is to split a set of training samples into two subsets and use one for constructing
the structure of each tree while using the other for defining the outputs. After the
construction step, we first discard the values wleaf assigned to the leaf nodes while
keeping the tree structure. The refinement process then updates wleaf using the
additional training samples.
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Fig. 2 Equal-time comparisons (20 minutes) of the average and our automatic blending of the
images rendered by SPPM [HJ09] and MLT [VG97] with manifold exploration [JM12]. We high-
lighted three scenes with different characteristics from our test cases (box, cryteck-sponza, and
water). The top row shows the reference images. The bottom two rows visualize errors, the optimal
blending weights, and the output blending weights of our framework. Depending on the types of
lighting effects, the optimal blending weights for SPPM and MLT that result in the minimal error
vary significantly. Simply taking the average of SPPM and MLT thus produces a suboptimal result
in terms of RMS error. We propose a machine learning framework which learns the relationship
between the characteristics of lighting effects and the optimal blending weights via regression
forests. The results demonstrate that our framework can suggest appropriate blending weights in
many cases and successfully reduce RMS error.

5 Results

We selected the two combinations of the rendering algorithms to show the effec-
tiveness of our framework: (1) SPPM [HJ09] and MLT [VG97] with manifold
exploration [JM12] shown in Fig. 2, (2) SPPM and BDPT [LW93; VG94] shown in
Fig. 3. We chose these algorithms because both the algorithm and the performance
are distinguishably different. One famous characteristic of SPPM is the ability to
handle specular-diffuse-specular paths efficiently. A caustic that can be seen through
a water surface is an example of such paths. MLT is based on Markov chain Monte
Carlo sampling which utilizes a sequence of correlated samples that forms a Markov
chain. The sequence of the samples is generated so that the resulting sample distri-
bution follows an arbitrary user-defined target function such as the measurement
contribution function. MLT is known to be effective for the scenes with complex
occlusion. BDPT can utilize various sampling technique by the combination of paths
traced from the sensor and the lights. These sampling techniques are combined with
multiple importance sampling [VG95]. The combination of SPPM and BDPT would
exhibit the good trade-off because BDPT is not efficient at handling specular-diffuse-
specular paths and while being more efficient at rendering diffuse surfaces [HPJ12;
GKDS12].

Page:8 job:paper macro:svmult.cls date/time:19-Jan-2017/21:51



Supervised Learning of How to Blend Light Transport Simulations 9

Relative Error Blending Weights
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Fig. 3 Comparisons of errors, the optimal weights and the approximations by our framework for
the combination of BDPT and SPPM. The selection of the scenes and meaning of the images are
same as Fig. 2. Similar to the combination of MLT and SPPM, our framework generally captures
the preference to the scene according to the characteristics of the scenes, although some difference
can be observed, e.g., preference to the scene dominated with specular material is somehow relaxed
(box scene).

For the implementations of rendering algorithms, we used Mitsuba renderer [Jak10].
Mutation techniques used for MLT are bidirectional, lens, caustic, multi-chain, and
manifold perturbation [JM12]. All the images except for the reference images are
rendered on a machine with Intel Core i7-4720HQ at 2.6 GHz. The training phase
is computed with a machine with Intel Core i7-3970X at 3.5 GHz and 16 GB of
main memory. Since the implementation of SPPM in Mitsuba renderer is not fully
parallelized, we only utilized only a single core for rendering so that it does not bias
toward MLT because of its more efficient parallelization. In order to facilitate the
future work, we publish our implementation on our website.

Training Samples: Our training set consists of 10 scenes with various character-
istics in order to cover as many types of paths as possible. We render all the scenes
with each rendering algorithm for 5, 10, 15, and 20 minutes. Each scene is rendered
five times, in order to alleviate overfitting as discussed in Section 3.1. Given this
whole training data, we generate a regression forest for each scene by excluding
training data for itself. We thus have 10 different regression forests as a result. Each
forest is tested against the corresponding scene that was excluded from its training. It
is essentially leave-one-out cross-validation in machine learning.

While it is possible to have a single forest for all the training scenes and test this
forest against the same set of scenes, we found that this kind of experiment is prone
to overfitting to the training scenes. Our regression forest consists of five trees and
the maximum depth of each tree is 15. The construction time of the regression forest
is 30 minutes.

Approximated Optimal Weights: Fig. 4 shows blending weights and RMS
errors for selected five scenes with the combination of SPPM and MLT (please refer
to the supplementary materials for the results of other scenes). Fig. 2 shows such
results with visualization of the error per pixel for three other scenes. We compare
approximated optimal weights via a trained regression forest with the average of
five different runs for each scene. The blending weight is fixed to 0.5 when a pixel
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Fig. 4 Comparisons of the optimal weights and the approximations by our framework for the
selected five scenes combining MLT and SPPM. The first row shows the reference images. The
bottom two rows visualize the optimal weights and the approximated weights via trained regression
forests. For many scenes, our framework largely reproduce the optimal weights, without any
information other than rough estimates of path features per pixel. The RMS errors between the
blended images and the references are improved compare to taking the average (Average). We also
show RMS errors for MLT and SPPM with the same total rendering time.

has no information on path features (e.g., background images). We blended two
images rendered by SPPM and MLT by taking the average (Average) or by using
the approximated optimal weight per pixel (Proposed). The running time of our
framework is less than 50 msec for all the scenes. The storage cost of our regression
forest is 100 KB. Both the running time and the storage cost are independent of the
geometric complexity of the scenes. We can see that optimal weights and weights
suggested by our framework are very similar in almost all the cases. Our framework
thus successfully learned the preference of an algorithm only based on path features.

RMS Errors: Fig. 5 shows RMS errors for 10 scenes for the combination of
MLT and SPPM. We also added the similar results with BDPT and SPPM in the
supplemental material. We plot RMS errors of MLT, SPPM, their average, and our
blended result for each scene with the total rendering time of 20 minutes for all
the methods. The plots are scaled so that the values for the average is one. We can
observe that our blending is superior to the average in all scenes. The reduction of
error by our blending is larger when the difference of RMS errors between SPPM
and MLT is large. Moreover, the blended solution by our framework sometimes
outperforms a better algorithm with the same total rendering time. Such a result is
not trivial since our framework spends only half of the total rendering time for each
algorithm. We should also note that just taking the average can in fact increase the
error for the same reason (e.g., cornell). This result supports that our framework can
improve the robustness of light transport simulation in practice.
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Fig. 5 Scaled RMS errors of MLT, SPPM, average, and blending with our framework over 10
scenes. All the methods use the total rendering time of 20 minutes. The average and our blending
spends 10 minutes for both MLT and SPPM, keeping the total rendering time equal to 20 minutes.
We scaled RMS errors so that the average is always one. The scenes are sorted roughly according to
the difference of RMS errors between MLT and SPPM.

Effect of Tree Depth: The images in Fig. 6 show the approximated optimal
weights for the box scene with different depths of the regression trees in the runtime.
As the depth increases, we can observe that the preference to each techniques becomes
more explicit. Yet another observation is that the approximated weights are converged
around the tree depth of 15. The graph in Fig. 6 shows the RMS error between the
optimal weight and the approximated weight with our framework for this scene. We
can observe that the RMS error coverages around the depth of 15, and we found that
it is similar for the other scenes as well. Along with the saturation of the weights, we
thus conservatively set the tree depth to 15 in our experiments.

6 Discussion

6.1 Alternative to Blending

While we found that blending is a practical approach to combine different rendering
algorithms, one might consider selecting one of the different algorithms instead of
blending. This alternative solution, however, is not feasible from two major reasons.
Firstly, as shown in Fig. 2, a better algorithm can change even within a single image.
Even though MLT looks converged in many regions, it can entirely miss certain
lighting effects such as specular reflections of caustics. As such, resolving all the
effects by a single algorithm can take a significant amount of rendering time than
combining the results of two algorithms. Recent work on robust rendering algorithms
are based on the same observation [HPJ12; GKDS12].

Secondly, defining useful features for this selection is not trivial and algorithm-
dependent. In order to select an efficient algorithm for a specific input scene, we
would need a feature vector of a whole configuration of the rendering process.
This information include parameters of each rendering algorithm that affects the
performance, which in turn makes the whole framework algorithm-dependent. It
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Fig. 6 Visualization of approximated optimal weights for the box scene with different tree depth
(top) and the corresponding plot of the approximation errors (bottom). The RMS errors of the
blended images are shown under each image. As the depth of the tree increases, the color indicating
the preference to MLT becomes a bit more explicit, but not significantly after a certain depth. The
plot of the variance shows how approximation errors of the optimal weights change according to
the tree depth, which also stops converging around the depth of 15.

is also not obvious how to encode input scenes as feature vectors. Unlike images,
which contain a set of pixels in a structured manner, scene data contains a set of very
different information such as material data, textures, triangle meshes. There is no
single data structure common to all of data necessary to define input scenes. This
lack of a common structured input form is a striking difference from applications of
machine learning for images.

One might also consider finding a distribution of total rendering time, so that
we do not spend too much computation for an algorithm with small weights. This
deceivingly obvious improvement, however, is not possible since our regression
forest is trained under the assumption that each algorithm spend the same rendering
time. Even if we can find such a distribution of rendering time somehow, optimal
blending weights are now different from those at the training phase since rendering
time for each algorithm is also different. To implement this idea, we would need to
have multiple regression forests for all the possible distributions of total rendering
time, which is not feasible.
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Fig. 7 Approximated blending weights (top) and the relative errors (bottom) for the selected three
scenes (box, crytek-sponza, and water) by replacing regression forests via a neural network.

6.2 Comparison to Neural Networks

We used regression forests as a machine learning technique to learn the relationship
between path features and the optimal blending weights. One possible option is to
replace it by neural networks. Given its success in the computer vision community, a
deep neural network [HOT06] is a possible candidate. We tested replacing regression
forests by a fully-connected four layer’s neural network using Caffe [JSD∗14] on
GPU as additional experiments. As shown in Fig. 7, we found that a neural network
can achieve similar performance to regression forests. We discarded this approach in
the end since even its running time is multiple orders of magnitudes slower (three
minutes) than regression forests (60 msec) without much improvement in terms of
RMS errors.

6.3 Limitations

Preparing Training Scenes: In general, a machine learning technique needs a
large number of training samples to avoid overfitting. While we carefully designed
a set of training scenes, it is not guaranteed that the prepared training scenes are
indeed sufficient for learning. This situation is in contrast to the computer vision
community; there are several standardized large datasets such as ImageNet [RDS∗15].
Although we used some standard models and scenes often seen in other rendering
research, it would be interesting as future work to generate training scenes based on
procedural modeling. This procedural modeling should include not only shapes, but
also materials, lighting, and camera parameters.
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Reference Relative Error (Average) Relative Error (Proposed)

0.0
1.0

RMSE
0.088577

RMSE
0.073325

Fig. 8 RMS errors for a test scene that is only slightly different from a training scene. This test
scene is made by changing the environment light and the camera configuration while retaining the
geometry and materials of the torus scene in Figure 2. For this experiment, we used the original
torus scene for training, and the modified torus scene at runtime.

Dependency on Training Scenes: We found that our method works especially
well if there are only slight differences between training scenes and test scenes.
Fig. 8 shows the torus2 scene which uses the same geometry and materials as the
torus scene in Figure 2, but with a slightly different camera configuration and an
environment map. For this experiment, we used only the torus scene for the training
phase, and rendered the torus2 scene. We can observe that reduction of RMS error
is significant in this case. This experiment indicates an interesting use case of our
framework in practice: when an artist is modeling a new scene based on existing
ones, we can train a regression forest with existing scenes beforehand.

7 Related work

Light Transport Simulation in Rendering: Since the development of path trac-
ing [Kaj86], the number of light transport simulation algorithms have been developed.
Among many rendering algorithms, we used the two representative approaches in
our tests: SPPM [HJ09] and MLT [VG97] with manifold exploration [JM12]. We
chose these two approaches because their algorithms are completely different and
have different characteristics as rendering algorithms. SPPM works by tracing a
number of light paths and estimates density of light path vertices at a visible point
through each pixel. MLT on the other hand traces a whole path by a Markov chain
from the previously generated path and estimates the histogram of this Markov chain
at all the pixels. SPPM is generally considered good at rendering caustics, while
MLT is considered efficient at resolving complex visibilities from light sources).
Our framework however is not restricted to use very different algorithms, since it is
independent of how each algorithm works internally.

Machine Learning in Rendering: Several researchers have already applied
machine learning to rendering. One popular application of machine learning in ren-
dering is regression models. Among others, Jacob et al. [JRJ11] utilized unsupervised
online-learning of a Gaussian mixture model (GMM) to represent a radiance distri-
bution in participating media. Vorba et al. [VKŠ∗14] also used online learning of

Page:14 job:paper macro:svmult.cls date/time:19-Jan-2017/21:51



Supervised Learning of How to Blend Light Transport Simulations 15

GMM to represent probability density functions for importance sampling. Ren et
al. [RWG∗13] introduced a realtime rendering algorithm using non-linear regression
to represent precomputed radiance data. The precomputed radiance data is modeled
as a multi-layered neural network [Hay98]. The idea is to learn the relationship
between scene configurations and the resulting radiance distribution based on off-line
rendering with random attributes. While we also use machine learning for regression,
we propose to use machine learning to combine existing rendering algorithms without
any modification to them. Our framework thus can be applied on top of any of the
previous work mentioned above. More recently, Nalbach et al. [OED∗16] showed
how to use CNN to approximate screen-space shaders. While the goal of their work
is completely different from ours, their work demonstrate the powerful potential of
applying machine learning to rendering.

Kalantari et al. [KBS15] recently proposed a image filtering technique to reduce
Monte Carlo rendering noise based on the multilayer perception [Hay98]. The idea
is to learn the relationship between the scene features such as a shading location
or texture values and a set of filtering parameters. Our work is inspired by their
successful application and we also use machine learning to find the relationship
between path features and the optimal blending weights. The difference is that their
work focuses to improve the result of a single image by filtering, while we consider a
situation where there are multiple rendering algorithms available for a user.

The aim of our work is to use machine learning to blend the results of dif-
ferent rendering algorithms. Such blending is often done by multiple impor-
tance sampling [VG95], and there have been many recent works on this ap-
proach [HPJ12; GKDS12]. Our work differs from multiple importance sampling
in that we treat each rendering algorithm as a black-box and does not require any
detailed algorithmic information such as path probability densities.

Regression Forests: Regression forests [Bre01] are actively used in many ap-
plications. One famous example is Kinect body segmentation [SFC∗11]. By simply
fetching neighboring depth values and parse the regression forest, this algorithm
can label each pixel by 31 different body parts quite accurately in realtime. For face
recognition, Ren et al. [RCWS14] showed that regression forests can be used to
detect major features such as eyes, a mouth, and a nose. Tang et al. [TYK13] used
regression forests to extract a skeletal hand model from an RGB-depth image.

For applications in computer graphics, Ladický et al. [LJS∗15] used regression
forest for fluid simulation and achieved x200 speed up. They trained a regression
forest via position-based fluid simulation by defining several features around each
particle. The trained regression forest is used to update the state of particles at the
next time step, without relying on costly simulation. Inspired by the success of
regression forests in many applications, we also utilize regression forests instead of a
more popular convolution neural network [HOT06]. As far as we know, our work is
the first application of regression forests in rendering.
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8 Conclusion

We presented a framework to automatically blend results of different light transport
simulation algorithms. The key idea is to learn the relationship between a class
of light transport paths and the performance of each algorithm on each class. For
classification of paths, we introduced a feature vector based on relative contributions
from different types of paths according to the Heckbert’s notation. We then calculate
optimal blending weights so that a resulting image has minimal errors on average after
blending. Using regression forests, we approximate a function that takes a feature
vector of light transport paths and outputs the optimal blending weight per pixel. The
resulting framework is fundamentally independent from how each algorithm works,
which makes it easily applicable to distinguishably different rendering algorithms.
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