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Fig. 1. Equal-time comparison (30 minutes) of the Ajar door scene, which is only illuminated by light leaking through the door. Left: Reference image computed
with bidirectional path tracing. Middle: Image rendered with Metropolis light transport (MLT) [Veach and Guibas 1997]. Right: Image rendered with our
geometry-aware Metropolis light transport (GeoMLT). Note how MLT has difficulties as the mutation of the paths passing through the gap tends to be rejected
because of changing visibility. Our approach adaptively controls the mutation size according to the geometry information surrounding each path segment.

Markov chain Monte Carlo (MCMC) rendering utilizes a sequence of corre-
lated path samples which is obtained by iteratively mutating the current state
to the next. The efficiency of MCMC rendering depends on how well the mu-
tation strategy is designed to adapt to the local structure of the state space.
We present a novel MCMC rendering method that automatically adapts
the step sizes of the mutations to the geometry of the rendered scene. Our
geometry-aware path space perturbation largely avoids tentative samples
with zero contribution due to occlusion. Our method limits the mutation
step size by estimating the maximum opening angle of a cone, centered
around a segment of a light transport path, where no geometry obstructs
visibility. This geometry-aware mutation increases the acceptance rates,
while not degrading the sampling quality. As this cone estimation introduces
a considerable overhead if done naively, to make our approach efficient, we
discuss and analyze fast approximate methods for cone angle estimation
which utilize the acceleration structure already present for the ray-geometry
intersection. Our new approach, integrated into the framework of Metropolis
light transport, can achieve results with lower error and less artifact in equal
time compared to current path space mutation techniques.
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1 INTRODUCTION
Light transport simulation with Markov chain Monte Carlo (MCMC)
is attracting increasing attention in the rendering research commu-
nity due to its excellent ability to locally explore features in the
sampling domain. MCMC employs a Markov chain whose states are
path samples distributed according to a user-defined target distribu-
tion. Thanks to this characteristic, MCMC rendering can efficiently
focus on sampling transport paths with large contributions to the
pixels in the image.
MCMC rendering proceeds by generating a tentative sample

based on the current sample which may then be accepted as the
next state, for instance by using a Metropolis-Hastings acceptance
probability. The efficiency of MCMC rendering crucially depends on
the design of the transition kernel (path mutation): very small steps
tend to be accepted often as the samples are likely to be very similar
and the acceptance probability will be high. The efficiency of MCMC
rendering, however, also depends on the autocorrelation between
states. High autocorrelation means less additional information in
the samples and thus lower effective sample size. Large step sizes,
on the other hand, typically result in many rejected samples and
can cause chains getting stuck. In order to design an efficient kernel,
we thus need to exploit the characteristics of the local structure of
the target distribution.
We focus on inefficiency due to rejections of samples caused by

geometric visibility, which has not been addressed so far by existing
approaches. For instance, let us think about a light transport path
passing through a small gap (Fig. 2). The mutation on the first part of
the path involves a change of the outgoing direction of the segment.
Here, the kernel with the support of (b) is better than that of (a)
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(a) (b)

Fig. 2. Path mutations can lead to many rejected proposals due to changes
in visibility: In this example, we mutate a light transport path (orange) by
changing the outgoing direction at the vertex on the sensor; the blue regions
show possible supports of the mutation kernels. Mutation by the kernel
with bigger support (a) is more likely to lead to an occluded segment and
thus rejected than mutations with kernel (b).

since much of the support of (a) results in tentative paths with
zero contribution due to the change in visibility. On the other hand,
the smaller kernel is not always better because it can degrade the
exploration and result in higher autocorrelation. Existing adaptive
mutation approaches [Jakob and Marschner 2012; Li et al. 2015]
do not care about the change of visibility in the design of their
mutations, and thus suffer from inefficiencies due to potentially
generating invisible paths.

We leverage the geometry information of the scene for a mutation
technique for MCMC rendering for the first time. Our method con-
trols mutation by estimating a cone centered around a path segment
where no scene geometry would obstruct a perturbed segment. To
make our algorithm efficient, we introduce an approximate cone
angle estimation taking advantage of the acceleration structure al-
ready present for ray tracing. Our mutation strategy can be easily
integrated into existing path space mutation techniques such as Me-
tropolis light transport [Veach and Guibas 1997], providing a tool
to take geometry information into account for MCMC rendering. In
summary, the main contributions of our work are:
• An MCMC rendering algorithm which exploits geometric infor-
mation and takes visibility into account to better adapt to the
local structure of the target distribution.
• A fast approximate estimation of the maximum cone angle cen-
tered around a segment of a light transport path such that no
scene surfaces are contained in the cone.
• A practical implementation of a geometry-aware mutation strat-
egy for Metropolis light transport, which only requires simple
modifications to existing code.

2 BACKGROUND AND PREVIOUS WORK

2.1 Light Transport Simulation
Light transport simulation computes a solution of the path integral,
which determines the intensity Ij of the j-th pixel as an integral
over the measurement contribution function fj (x̄) with respect to
the product area measure µ:

Ij =

∫
Ω
fj (x̄)dµ(x̄), (1)

where Ω denotes the path space which represents the space of all
possible paths of arbitrary length. Specifically, the path space can
be written as Ω = ∪∞k=2Ωk , where Ωk is the set of paths with k
vertices. An element of the path space x̄ ∈ Ω is called a path and
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Fig. 3. Perturbation of the outgoing direction at a vertex (not located on the
sensor). Instead of using the tangent plane at x (blue plane), we perturb the
original direction ω to the direction ω′ in the local frame with the up vector
ω (red plane). In this local frame, the perturbed direction can be represented
by the spherical coordinates (θ, ϕ) where θ is exponentially distributed and
ϕ is sampled uniformly. The kernel support (orange) is controlled by the
two parameters rmin and rmax.

represented by a sequence of points on the scene surfacesM as
x̄ = (x1, . . . , xk ) ∈ Ωk where x1, . . . , xk ∈ M. In the following dis-
cussion we will drop the subscript j from the contribution function
fj for notational simplicity.
Many techniques to sample paths x̄ have been proposed. Path

tracing [Kajiya 1986], for example, generates paths starting from the
sensor, light tracing [Arvo 1986] traces paths from the light sources,
and bidirectional path tracing [Lafortune and Willems 1993; Veach
and Guibas 1994] generates paths starting from the both sides.

2.2 MCMC Rendering
MCMChas initially been introduced to rendering asMetropolis light
transport (MLT) [Veach and Guibas 1997]. This method generates
a sequence of samples in the path space based on the Metropolis-
Hastings (MH) algorithm [Hastings 1970; Metropolis et al. 1953].
New samples are generated based on the previous samples only,
which results in a Markov chain. When taking the measurement
contribution function f as target distribution, the sequence of paths
is eventually distributed according to the normalized measurement
contribution function f /b, whereb =

∫
Ω
f (x̄)dµ(x̄) is the normaliza-

tion constant. The value b is typically estimated with independent
MC sampling, e.g., bidirectional path tracing.

Given the current path x̄i , the MH algorithm proposes a tentative
path ȳ ∼ T (x̄ → ȳ) according to the transition kernel T . This
proposed tentative path ȳ is either rejected (and the current state
kept) or accepted as the next state with the acceptance probability
min (1,a):

x̄i+1 =

{
ȳ with probabilitymin(1,a)
x̄i otherwise,

(2)

where

a = a(x̄i → ȳ) =
f ∗(ȳ)T (ȳ → x̄i )

f ∗(x̄i )T (x̄i → ȳ)
≡

R(x̄i → ȳ)

R(ȳ → x̄i )
. (3)

Here f ∗ is the scalar contribution function, which typically is the
luminance of f . The equation is further simplified with R(x̄i → ȳ) =
f (ȳ)/T (x̄i → ȳ). Using the sequence of samples {xi }1, ...,N gener-
ated by this mutation process, the estimate of the pixel intensity Ij
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Area light source
Small hole

Large hole

Fig. 4. The scene configuration of our introductory example. The scene is
lit by a large area light, occluded from the camera by a plane with two
small and two large quadratic holes. This example illustrates the conceptual
difference between standard and geometry-aware MLT (see also Fig. 5).

can be written as

Ij ≈ Îj ≡
1
N

N∑
i=1

f (x̄i )

f ∗(x̄i )/b
=

b

N

N∑
i=1

f (x̄i )

f ∗(x̄i )
. (4)

Mutation strategies depend on a state space. Kelemen et al. [2002]
proposed primary sample space MLT (PSSMLT), a variant of MLT
where the state is defined as a sequence of (random) numbers as
opposed to a sequence of path vertices. Extending this framework,
Hachisuka et al. [2014] proposed multiplexed MLT (MMLT) which
combines PSSMLT with multiple importance sampling [Veach and
Guibas 1995] by extending the state space to additionally pinpoint
the bidirectional path connection strategy. MLT operates in the
path space and cannot directly be combined with PSSMLT. Three
recent works by Pantaleoni [2017], Otsu et al. [2017], and Bitterli et
al. [2017] concurrently proposed techniques to combine the different
state spaces by using an inverse mapping from the primary sample
space to the path space.

2.3 Path Space Perturbations
Our geometry-awaremutation technique is based on the lens, caustic,
and multi-chain perturbations operating in the path space [Veach
and Guibas 1997]. Here a subpath is perturbed by changing the
outgoing direction from a vertex in spherical coordinates [Veach
and Guibas 1997, Sec. 5.3.2]. For instance, the lens perturbation
changes the direction x1 → x2 and traces specular interactions
until it finds a diffuse surface.
Fig. 3 illustrates such a perturbation which is performed on the

unit sphere (θ ,ϕ) in the local frame. Veach and Guibas [1997] sug-
gested to perturb the direction in the local frame by the reciprocal
distribution as

θ = rmax exp
(
− ln

rmin
rmax

·U1

)
, ϕ = 2π ·U2, (5)

where rmin < rmax are the parameters controlling the kernel size
such that θ ∈ [rmin, rmax]; U1 and U2 are uniform random numbers
in [0, 1]. The probability density function (pdf) in the solid angle
measure dσ is then

pσ (ω0 → ω(θ ,ϕ)) =

{
1

πθ sin θ if θ ∈ [rmin, rmax]

0 otherwise.
(6)
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Fig. 5. The trace-plot of the samples for the scene configuration shown in
Fig. 4 for MLT and our GeoMLT. Left: the trace-plots in screen space. In this
example the state is a single path segment with two vertices. The screen
position is calculated from the direction of the segment and projection onto
the screen. The orange lines show the exploration of the Markov chains.
The black dots denote rejected samples; rejection in this example is due
to change of visibility only. Right: the trace-plots of the x -coordinates of
screen-projection for the first 2000 mutations.

The step size has a large influence on the rendering performance:
small steps lead to high autocorrelation and a low number of effec-
tive samples, and large steps result in many rejections and might
lead to stuck chains. Finding a good step size thus is crucial for the
overall performance; our work adaptively controls this step size
based on the geometry surrounding a path.

2.4 Adaptive Step Sizes
Several researchers proposed to adaptively change the step size
according to certain features of the measurement contribution func-
tion. Li et al. [2015] utilized local information obtained from analytic
derivatives to adaptively control the shape of the transition kernels
based the idea of Hamiltonian Monte Carlo [Duane et al. 1987].
Jakob and Marschner [2012] introduced a mutation strategy which
explores the state space constrained to the lower dimensional sub-
space of valid transport paths on specular surfaces. Kaplanyan et
al. [2014] and Hanika et al. [2015] generalized this approach by
introducing a representation of paths based on a sequence of the
half-vectors. This space of half vectors is explored using adaptive
step sizes in all dimensions derived from ray differentials. These
approaches are all based on analytic derivatives and ignore visibility
since visibility derivatives contain Dirac delta functions, and con-
sequently can suffer from inefficiency due to sampling obstructed
paths. Our work provides a first tool to incorporate visibility into
mutation strategies of MCMC rendering.

2.5 Cones in Rendering
Cones have been used in various contexts in rendering. Cone trac-
ing [Amanatides 1984] extended a ray to a cone as a primitive
for scene intersection to achieve efficient anti-aliasing. Roger et
al. [2007] used cones to represent collections of rays and constructed
a ray-hierarchy to determine ray-scene intersections for multiple
coherent rays. Mora [2011] utilized cones as ray packets in the con-
text of divide-and-conquer ray tracing. Crassin et al. [2011] used
cone tracing for voxelized scene geometries. These approaches all
essentially find an intersection between a given cone and the scene
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Truncation plane with t1

Truncation plane with t2

x1
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Fig. 6. Parametrization of the truncated, isotropic cone for a path segment
x1x2. θ is the cone angle which is defined as the angle between the cone
axis vector x2 − x1 and the surface of the cone. The truncation range [t1, t2]
describes the valid domain of the cone which lies in the slab defined by two
planes perpendicuar to the cone axis. We note that the truncation plane is
not always perpendicular to the cone axis.

geometry. In contrast, our approach fits empty cones around a given
ray segment to determine empty space.

3 OVERVIEW
The main idea of our geometry-aware MLT is to mutate the di-
rection of a path segment such that it will not result in occlusion
due to the scene geometry. To design such a mutation, we find a
cone centered around a path segment and determine the maximum
opening angle such that no geometry is intersected with this cone
(Sec. 4). This operation will be performed very often and thus has
to be efficient to achieve a net performance gain. We exploit the
fact that, for MCMC, this cone angle estimation does not need to
be exact. We thus present approximations which exploit the very
same data structure as already used for the ray-triangle intersection
(Sec. 5). We then explain how to incorporate our geometry-aware
mutation into Metropolis light transport (Sec. 6).
Fig. 4 and 5 illustrate and motivate our approach. The shown

scene consists of a blocker with four holes and is illuminated by
an area light source in the back. The surface between the sensor
and the light source occlude the light and leave two smaller and
two larger holes. In this example, we restricted paths to a length
of one (i.e. the light source is directly visible from the sensor or
blocked) to illustrate the conceptual difference of conventional and
geometry-aware MLT. We combined two types of mutations for this
example: the lens perturbation which is designed to mutate within
a hole, and the bidirectional mutation for jumps between the holes.
We ran the simulation for both MLT and geometry-aware MLT
(Fig. 5). The mutation size for standard MLT is configured to explore
the larger hole well. The perturbation with the same mutation size,
however, cannot explore the small hole very well as most proposals
have zero contribution due to occlusion. On the other hand, our
approach can explore all the holes well as it adapts the mutation size
to the surrounding geometry around the path segment. This can also
be observed in the trace-plot of the x-coordinates of the projected
states. The top-right plot shows the case with naive MLT where
the mutation explores the larger hole well, yet often fails to sample
the smaller hole. On the other hand, the plot for geometry-aware
mutations shows good exploration of both holes by adapting the
mutation size.

x1 x2

Cone with t2 = t2,1
Cone with t2 = t2,2

Fig. 7. Intersection between the cone and the object at x2. We utilize the
parameter t2 to control how much close-by geometry in the target region
influences the cone angle. The two cones with different parameters t2,1
and t2,2 (t2,1 < t2,2) have different opening angles, because the base of the
cones intersect geometry close to x2.

4 GEOMETRY-AWARE PERTURBATION SIZE
Our mutation technique avoids rejections due to a change in vis-
ibility by defining the maximum perturbation size rmax (Eq. 5) as
a function of the current path x̄ . Depending on rmax, we choose
the minimum perturbation size as rmin(x̄) = αrmax(x̄) with a user-
defined parameter α ∈ [0, 1).

We first introduce the idea with a single path segment x1x2 where
x1 is kept and the outgoing direction is to be perturbed. We directly
apply this in the lens perturbation and potentially iterate for more
segments along a path when doing multichain perturbations. The
maximum kernel size of the perturbation is related to the set of
segments which do not intersect any other surface than that where
x2 lies.

To this end, we determine a truncated cone (Fig. 6) where x1 is the
apex and x2 is on the axis of the cone with the maximum cone angle
θ (with 0 < θ < π/2) such that no other surface intersects with
it. The truncation of the cone’s apex and the base is used to avoid
self-intersections close to x1 and to avoid unnecessary small cone
angles due to geometry close to x2 (Fig. 7). These surfaces do not
necessarily represent blocking geometry and we thus truncate the
cone. We denote the truncation range as [t1, t2] measured along the
cone axis from the point x1. Furthermore, we allow the cone base at
t2 to be non-perpendicular to the cone axis x1x2 to better account
for oblique directions and therefore take the geometric normal of
the surface intersected at x2 as its normal. The base at t1 is kept
perpendicular to the cone axis.
We denote the set of all points contained in this truncated cone

as C(θ ) (we omit the dependency on x1 and x2 for notational sim-
plicity), then the set of points contained both in the truncated cone
and the scene surfaceM can be written asM ∩ C(θ ). Determining
the kernel size thus requires:

θmax = sup {θ | M ∩ C(θ ) = �}. (7)

Unfortunately, determining θmax is very costly. One possibility
would be a binary search with a cone-scene intersection test. The
cone angle, however, is required for every perturbation of a path
segment and an exact computation is prohibitively expensive – we
thus need efficient approximations.
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Fig. 8. Calculation of the approximate maximum cone angle for geometry
enclosed by an AABB b with vertices V (b) = {p1, p2, p3, p4 } (illustrated in
2D). The projected distances of p1 and p2 (blue dots) are within the range of
[t1, t2] and we use these vertices to estimate the cone angle; the projected
distances of p3 and p4 (red dots) are outside of this interval and ignored.

5 APPROXIMATE CONE ANGLE
To alleviate the computational cost for determining θmax, we now
introduce approximations whose computation leverages the same
acceleration structure as already used for ray tracing. We will use
the axis-aligned bounding boxes (AABBs) of the scene geometry
as proxy geometries for the estimation of θmax. Note that the per-
turbation size does not need to be exact as long as it preserves the
detailed balance property of the Markov chain.

5.1 Estimating the Cone Angle for a Single AABB
The first building block of the estimation is computing the cone angle
θmax for a given segment x1x2 and a single AABB; we here assume
that t1 and t2 have already been determined to define the truncation
plane at t1 (perpendicular to x1x2) and at t2 whose orientation is
defined by the geometric normal at x2. We denote the AABB as b
and its corners as pi, and compute θmax for the truncated cone. For
this, we take the minimum of the angles computed in following
three stages (Fig. 8):
a) if pi lies in between the two truncation planes, we consider it

for θmax and compute the angle between x1x2 and x1pi.
b) we compute the closest point to x1x2 on each edge of the AABB.

If the point is between the two truncation planes, we compute
the respective angle and update θmax.

c) lastly we test if the base contains the closest point on the AABB.
We intersect the truncation plane at t2 with the AABB. This
yields a convex polygon and computing the closest point to
x1x2 reduces to a 2D problem.

5.2 Cone Estimation using a BVH-Cut
To estimate the maximum cone angle for a segment and the entire
scene, we reuse the ray tracing acceleration structure. The AABBs
that we consider for the approximation form a cut through the tree
of the acceleration structure. We begin by computing an initial cut
which will be refined afterwards. It contains all nodes whose parents
are intersected by x1x2, but which are not intersected themselves
(Fig. 10). This requires only minor modifications to common ray
traversal code (Alg. 1). This initial cut contains AABBs which sur-
round the segment x1x2 but do not intersect it. This also avoids the
case that the cone angle becomes zero if the path goes through the

Fig. 9. Using the AABBs of the geometry always underestimates the cone
angle. The refinement yields more accurate results.

empty space of an AABB. In this case, the ray segment is already
intersected with the AABB and thus it would be excluded fromCinit
and the estimation of cone angles.
Computing θmax from this set of AABBs in Cinit using the algo-

rithm from Sec. 5.1 yields estimated cone angles which will always
be smaller than the accurate solution (Fig. 9).We improve the ac-
curacy by refining the cut, i.e., replacing nodes in the cut by their
children. We iteratively split the node which currently limits the
cone angle. If this node is a leaf, we terminate the refinement; oth-
erwise we proceed until a maximum number Nmax of AABBs is
reached. Alg. 2 shows an efficient refinement algorithm using a
priority queue.

5.3 Trading Accuracy for Speed
We also explored variants of cone angle estimations which are faster
to evaluate but more approximate. In particular we show results for
the variant which implements option a) from Sect. 5.1, i.e., testing
only AABB corners, and without cut refinement. In Sect. 7 we eval-
uate this more approximate and faster method as well as the more
precise method to cover the spectrum of possibilities. In general, it
often paid off to use the more accurate cone estimation.

θ3x1

x2

θ2

θ1

θ4

Fig. 10. Computing the approximate maximum cone angle for an entire
scene using the AABBs of a bounding volume hierarchy. Blue rectangles
show the AABBs intersected by the truncated ray, and the red rectangles
show their children which are not intersected themselves. These are used
for estimating the cone angles.

6 GEOMETRY-AWAREMETROPOLIS LIGHT TRANSPORT
We will now introduce geometry-aware Metropolis light transport
which uses the cone angle estimation for adapting the step sizes. We
begin with a geometry-aware extension of the multi-chain pertur-
bation. We can similarly extend the other perturbation techniques,
such as the lens or caustic perturbation. As the original multi-chain
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ALGORITHM 1: A standard ray traversal procedure modified to cal-
culate the initial set of AABBsCinit. The input is the truncated ray r and
the current nodev . The function begins the traversal from the root node
and Cinit is initialized with �. The blue line shows the modification to a
regular intersection computation.
Function IntersectWithInitialCut(r, v):

if ray r does not intersect AABB of v then
Cinit ← Cinit ∪ {v }

else
if child(v) = � then

IntersectWithPrimitives(v)
else

foreach vc ∈ child(v) do
IntersectWithInitialCut(r, vc )

end
end

end
EndFunction

ALGORITHM 2: Greedy refinement process of BVH-cut. r is the ray
segment and Nmax is the maximum number of AABBs considered for the
approximation.Cinit is the initial cut computed during ray traversal.Q is
a priority queue and PopQueue returns the node v among the elements
in the queue which limits the cone angle.
Function RefineBVHCut(r , Nmax):

Q ← �
foreach v ∈ Cinit do

PushQueue(Q , v , θ computed for AABB v)
end
while number of elements in Q < Nmax do

v ← PopQueue(Q)

if child(v) = � then
return v

else
foreach vc ∈ child(v) do

PushQueue(Q , vc , θ computed for AABB v)
end

end
end
return PopQueue(Q)

EndFunction

mutation, given a current path x̄ = x1x2 · · · xk , our modified strat-
egy iteratively mutates the path segments xixi+1 starting off a non-
specular surface and ending on a specular surface until it finds
two consecutive non-specular vertices xs−1xs ; the mutation exam-
ines segments starting from the point on the aperture (xk ). Note
that this mutation retains the number of vertices and the surface
type associated with each vertex, and the mutated subpath then
is ȳ = x1x2 · · · xs−1ys · · · yk . The perturbation of each segment
xixi+1 (k > i ≥ s) is done as described in Sec. 2.3 where rmax is the
estimated maximum cone angle, and rmin(xixi+1) = αrmax with a
constant parameter α ∈ (0, 1).

If xi+1 is on the aperture or a non-specular surface, we perturb the
original directionω0 = xi+1 → xi . The next vertex yi is obtained by
tracing a ray into the mutated direction ω. The direction yi+1 → xi
is not used because it would introduce an additional occlusion test
between yi+1 and xi when we compute the acceptance ratio. If
the vertex xi+1 is on a specular surface, we trace a ray into the
deterministic direction to find the next vertex yi .

Scene Method Mutations
Acceptance rate

Overall Perturbation

Ajar door
MLT 490M 15.3% 20.0%

FastApprox 386M 34.1% 57.6%
BVHCut 242M 35.2% 59.8%

Dining room
MLT 570M 8.7% 11.3%

FastApprox 414M 27.7% 49.2%
BVHCut 256M 31.2% 56.3%

Salle de bain
MLT 557M 22.0% 30.8%

FastApprox 466M 36.3% 59.4%
BVHCut 292M 39.7% 66.2%

Staircase
MLT 359M 20.3% 30.3%

FastApprox 246M 32.5% 54.7%
BVHCut 134M 39.9% 69.4%

Table 1. Statistics of our experiments. Mutations shows how many muta-
tions is executed in the same rendering time. We also show that the overall
acceptance rates and the rates for the corresponding perturbation technique
to the method.

The mutated path ȳ is accepted as the next state with the ac-
ceptance probability given in Eq. 3; otherwise the state remains x̄ .
R(x̄ → ȳ) and R(ȳ → x̄) are required to compute the probability.
Instead of directly computing them, we can first extract the common
term in both and only compute the rest for the subpaths x̄s and ȳs :

R(x̄ → ȳ) = C(x̄ ↔ ȳ) ·
f (ȳs )

T (x̄s → ȳs )
, (8)

where the shared termC(x̄ ↔ ȳ) ≡ C(ȳ ↔ x̄) is eventually canceled
out when we compute R(x̄ → ȳ)/R(ȳ → x̄). f (ȳs ) and T (x̄s → ȳs )
are defined for the subpaths x̄s and ȳs as

f (ȳs ) =W (xk ) ·
k−1∏
i=s

fs (xi−1, xi , xi+1) ·G(xi ↔ xi+1) (9)

T (x̄s → ȳs ) =
s−1∏
i=k

{
1 if xi is specular,
pσ (ω

′
i → ωi )

���dσdA ��� otherwise.
(10)

We assume in this notation that fs (., x, .) evaluates to Le (x) if x is on
the light source, and further that the BSDF of a specular dielectric
contains only the Fresnel term, i.e. the Dirac delta is canceled out in
both the BSDF and the transition probability.

We need the Jacobian determinant |dσ/dA| to convert the transi-
tion probability in Eq. 6 to the area measure, which is a standard
geometry term. The estimation of the maximal cone angle is re-
quired when we evaluate the term pσ (ω

′
i → ωi ). As we compute R

for both directions, we also need to compute the maximum cone
angle for the reverse probability, which incurs additional compu-
tation cost. This cost is not overly expensive because the limited
truncation range allows early termination of BVH traversal.
We always combine geometric-aware mutations with bidirec-

tional mutations which enables global exploration of the state space.
The sample distribution via MLT converges to the target distribu-
tion as long as the combination of mutation techniques preserves
ergodicity. This is an inherent property from MLT, irrespective of
the use of our geometric mutations.
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Fig. 11. Equal-time comparisons of the scenes (Dining room, Salle de bain, and Staircase) between MLT and GeoMLT (Ours).

7 RESULTS
We implemented the original and our proposed perturbation tech-
niques in the same rendering system using MLT [Veach and Guibas
1997]. We always refer to the original approach MLT and ours as
GeoMLT. For our method, we implemented geometry-aware multi-
chain perturbation. All experiments are conducted on a machine
with an Intel Core i7-6700 at 3.4 GHz using 8 threads. All compar-
isons are equal-time renderings of 30 minutes. The reference images
have been rendered using bidirectional path tracing with more than
10 hours of computation time using two machines with 128 and
160 threads. We configured the maximum path length to 14 for all
the scenes. We set rmin = 0.05 and rmax = 0.5 for the mutation
techniques without geometry-aware mutations. Furthermore, for
our approach, we set Nmax = 10 and the parameter α is fixed to
α = rmin/rmax = 0.1 so that the ratio of the two parameters remains
the same as for MLT.

For all the experiments, we combined two different classes of mu-
tation techniques: the bidirectional mutation for global exploration,
and the multi-chain perturbations for local exploration with equal
selection probability. The comparisons are designed to evaluate the
effectiveness of our approach for the otherwise difficult cases, and
in order to examine how our approach is different from the existing
one. For this we use two mutation techniques that differ only in
whether they use geometry-aware mutations

Clamping the Estimated Cone Angle. In order to avoid the case that
the cone angle degenerates to zero if a ray segment glances off the
geometry and the case that no intersection results in overestimation

of the cone angle, we clamp the estimated angle to a user-defined
range of [τmin ,τmax ]. For the experiments in this paper, we set
τmin = 0.01 and τmax = 0.5. We intentionally set τmax to match rmax
so that the maximum possible cone angle becomes the same in the
comparisons.

Avoiding Unnecessary Cone Angle Underestimation. As shown in
Fig. 7, the cone angle will be underestimated if the base of the cone
intersects geometry near the target point x2. In our implementation,
we set t1 = 10−4 and t2 = 0.99L where L = ∥x2 − x1∥ is the length
of the segment x1x2. This resembles the practice of limiting the
valid range of the ray to avoid self-intersections during ray-triangle
intersection.
Equal-Time Comparisons. We rendered three scenes with differ-

ent geometric complexity with different materials: Ajar door, Salle
de bain, and Staircase. BVHCut refers to the cone angle estimation
described in Sec. 5.2, and FastApprox refers to Sec. 5.3. Table 1 sum-
marizes the statistics of the renderings for each scene.
Fig. 1 shows an equal-time comparison between MLT and Ge-

oMLT in the Ajar door scene. In this scene the geometry seen from
the sensor is illuminated by light leaking through the door only.
Mutating paths connected through the gap is difficult because of
occlusion. GeoMLT can handle these cases efficiently because the
mutation step sizes are adapted to the surrounding geometry. Ge-
oMLT well also explores paths near the discontinuities between
objects, which improves the efficiency of the MCMC process, for
instance, near the boundary between the wall and the floor, or be-
tween the teapot and the table. In parts of the scene where paths are
unobstructed and are free to scatter diffusely the performance of our
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Fig. 12. Error distribution of the scenes (Ajar door, Dining room, Salle de bain, Staircase).

approach is similar to MLT. The effectiveness of our approach can
also be observed in the pixel-wise error distribution (Fig. 12). We
use the relative root mean square error (rRMSE) as an error metric
for the images.
Fig. 11 (top) resembles the introductory example of Fig. 4 in a

more practical scenario: the light enters through window blinds
which are almost closed. As can be seen in Fig. 12, GeoMLT improves
the error significantly compared to MLT. Furthermore, it becomes
apparent that the effectiveness of the algorithm is also due to difficult
visibility under the table and close to the dishes on the table (for
instance the error on the back wall does not change much).
Fig. 11 (middle) shows an equal-time comparison in the Salle de

bain scene, which contains several different materials including
diffuse, specular, and glossy. The scene is illuminated with a large
area light source directly visible from the camera. Unlike the Ajar
door scene, the major part of the scene is directly illuminated by the
light source. Even in such a simple lighting situation, our proposed
approach can improve the image quality – especially in highly
occluded parts or near object boundaries. The error distribution
as compared to the reference is shown in Fig. 12. We can observe
that the error distribution of the parts that can be seen through the
mirror object (blue inset) has a characteristic that is different from
the part that can be seen directly from the sensor (green inset). This
is because the maximum cone angle estimation is applied only to
the segments starting from a non-specular surface. In other words,
no estimation happens for the vertices associated with the specular
surface. In this sense, this part of the scene shows a failure case of
our approach.

Fig. 11 (bottom) shows equal-time renders of the Staircase scene.
This scene has a similar characteristic as the Salle de bain. Many
parts of the scene are also directly illuminated and some parts,
e.g., under the stairs, are indirectly lit by light bouncing through
moderately complex occlusion. The error distribution is shown in
Fig. 12. Again, our approach improves the parts of the scene near
geometric discontinuities (such as in the insets). However, in this
scene we can also observe a part where naive MLT is better than
GeoMLT: on the pillar on the left. This is because tracing a cone
from the camera to the pillar results in a big opening angle, since
there is no nearby geometric obstruction. In fact, the opposite is
the case: a large mutation step will jump off the pillar instead of
exploring it, because there is no nearby geometry. Thus, our cone
estimation is suboptimal in this part of the scene, yet the overall
rRMSE is still better than for standard MLT.

Accuracy of the BVHCut Approximation. Fig. 13 shows cone an-
gle estimates for primary rays. The values are computed from the
segment obtained by the intersection between the primary ray and
the surface. The colors correspond to the values in [τmin,τmax]. The
results with the exact cone angle calculation (Eq. 7) are shown in the
first row. The BVHCut (Sec. 5.2) version looks similar to the exact
case, because subdividing the AABBs results in a quite accurate
estimation. On the other hand, FastApprox (Sec. 5.3) shows some
structured artifacts. We want to note that even this simple approach
can coarsely capture the characteristics of the exact solution.

Dependency on the Acceleration Structure. Because the approxima-
tion depends on the acceleration structure used for ray tracing, we
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Fig. 13. Visualization of the cone angle distribution over the image plane. The color ramp ranges from τmin = 10−2 to τmax = 5 · 10−1.

evaluate the image error with respect to this data structure. Fig. 14
shows how the error distribution changes if the scene is rotated
around the up vector. The rotation of the scene forces the accelera-
tion structure to change because the axis aligned bounding boxes
change. In both cases, we can observe visible changes in the error.
For instance, in FastApprox, we can find a discontinuity on the back
wall. Although still noticeable, BVHCut can alleviate these negative
effects because of the similarity to the exact cone angle computation
(which depends on the geometry, but not the acceleration structure).

Quality of Exploration. After the burn-in phase which removes
start-up bias, the samples from a Markov chain follow the central
limit theorem. The quality of the exploration of a Markov chain
can be quantified by looking at the autocorrelation of the samples
in the chain. This autocorrelation affects the effective sample size
(ESS), which then reduces the Markov chain Monte Carlo standard
error MCMC-SE =

√
Var/ESS much like the number of samples in

plain Monte Carlo would [Betancourt 2017, Sec. 2.2]. The autocor-
relation is an intuitive measure for how clumpy the appearance
of the sampling scheme will be. Since it is not straight forward to
estimate [Geyer 1992], we give RMSE values for equal sample com-
parisons instead. These numbers shown in Fig. 15 relate directly to
the MCMC-SE.

Differently-Sized Geometry. Fig. 16 shows equal-time renders of
the Tree scenes with contain geometries of different details (larger
trunk, smaller branches). The scene is illuminated by an area light,
with (bottom) and without (top) a diffuse reflector behind the tree
model. In both cases our approach outperforms MLT, however, the
performance gain is greater for the scene without the reflector. In the
scene with the reflector, MLT is likely to make a valid mutation for
the path segment connecting a point on the sensor and a point on the
reflector. This is because a perturbed path segment can jump over
the branches with thin geometries. Although we can observe that
even in the scene with the reflector the rendering of tree branches

is still better with our approach, the rendering of the background
compensates the error as a whole as the reflector covers half of the
image. It can be interesting for future work to determine how to best
balance mutations which are aware and unaware of the geometry.

8 DISCUSSION
Parameters. Our method has several parameters to control its

behavior. Similar to most rendering algorithms, the selection of
these parameters affects the final result. The performance of our
approach also obviously depends by the configuration of the scene
geometry, because the maximum cone angle estimation depends on
the acceleration structure. Although we leave a detailed error analy-
sis for future work, we observed that looser bounding volumes can
introduce larger errors in the estimation. This observation implies
that bounding volumes have to be tight for our method to work
best, however, this is generally desirable for acceleration structures.

Cone Angle Estimation. We have tested variants of cone angle
estimations, where BVHCut and FastApprox can be seen as corner
cases (elaborate vs. very coarse) – which, however, provide quite
similar performance. Still there might be more efficient and effective
solutions, possibly depending on the exact accleration structure and
its implementation.

Limitations. As pointed out in the discussion about the Salle de
bain scene (Fig. 11, middle), our approach currently does not handle
the estimation of cone angles for segments passing through specular
surfaces. Instead, our approach focuses on the perturbation of a
single path segment starting from a diffuse surface. This becomes
visible when a part of the scene is observed through a mirror as in
the Salle de bain scene.

Another limitation is potentially visible discontinuities in the er-
ror distribution of the image, e.g., on the door in the Ajar door scene
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Fig. 14. Error plots (rRMSE per pixel) with rotated scene geometry, resulting in rotated AABBs and thus a different acceleration structure. The BVHCut version
is more stable under rotation of the input, because of the adaptive subdivision.

(Fig. 12, top). Although BVHCut alleviates this issue to some ex-
tent, these discontinuities stem from the AABBs of the acceleration
structure and the clipping of the estimated cone angle.

We also note that there are situations where our approach might
not outperformMLT due to the overhead of cone angle estimation. If
the estimated cone angle is clamped toτmax, our approach essentially
falls back to the original perturbation. In this case, the additional
computation has been superfluous.

Reusing Acceleration Structure. Our approach reuses the accelera-
tion structure for ray-scene intersection. Although using a separate
acceleration structure to represent only the empty spaces would be
an interesting future work, we decided not to use such a structure
since the use of the acceleration structure enables us to perform
ray-scene intersection and cone fitting queries at the same time. It
is important to note that we need two cone fitting queries for each
perturbation of a segment, one for the forward transition probability
and one for the reverse. We also need a ray-scene intersection query
with the perturbation. Alg. 2 shows how it is achieved efficiently,
which would not be possible with a separate data structure.

Future work. Our cone estimation scheme would be more efficient
if cones could anisotropically adapt to the shape of the geometry.
For instance, in the Ajar door scene, since the rooms are connected
with a narrow gap that extends all the way to the ceiling, having
vertically elongated cones would better with the visibility term
in this case. This could be achieved by estimating cone angles for
multiple directions orthogonal to a path segment.
Our approach focuses only on surface rendering at the moment.

Supporting participating media would be an interesting extension,
although it involves additional difficulties concerning distance sam-
pling in a volume for example.

Although a combination of mutation techniques in different state
spaces is possible [Bitterli et al. 2017; Otsu et al. 2017; Pantale-
oni 2017], designing geometry-aware mutations in primary sample
space is a fascinating candidate for future work. For instance, it
would be interesting if we could do geometry-aware mutations
directly in the primary sample space, which would enable us to com-
bine with other local adaptation approaches, such as the approach
by Li et al. [2015].

Dining roomAjar door Salle de bain Staircase

Fig. 15. Asymptotic error behavior: RMSE over the number of mutations
(blue: MLT, orange: FastApprox, green: BVHCut).

9 CONCLUSION
We presented a mutation strategy which adaptively changes the mu-
tation step size according to the geometry of the scene. Our method
restricts perturbations of path segments such that nearby geometry
is not intersected, as this would always result in rejected proposals.
We introduced fast, approximate algorithms to estimate the maxi-
mum perturbation angle, which reuse the very same acceleration
structure which is already present for ray casting. We demonstrated
that our approach can greatly improve the exploration performance
of a Markov chain. Our perturbation strategy has been designed
with small geometric features in mind, such as door slits or keyholes
where the light shines through. However, as our results show, it
also reduces noise near geometric edges, such as the one between
the floor and the back wall in the Ajar door scene. We believe that
using information about geometric visibility has great potential and
can be used to ameliorate many other cases of inefficient mutations
due to geometric constraints.
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