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Fig. 1. Equal-time rendering (20 minutes) of two scenes. The door scene contains glossy and specular materials and is illuminated by indirect lights with
difficult visibility. This scene can be effectively rendered with MLT [Veach and Guibas 1997], but exhibits suboptimal performance with multiplexed MLT
(MMLT) [Hachisuka et al. 2014]. On the other hand, the necklace scene, which is characterized by glossy interreflections, shows the opposite behavior. Our
framework makes it possible to combine mutation strategies using the two different state spaces of MLT and MMLT, enabling the combination of specialized
mutation strategies, and resulting in a general algorithm that works robustly in many cases.

Rendering algorithms using Markov chain Monte Carlo (MCMC) currently

build upon two different state spaces. One of them is the path space, where

the algorithms operate on the vertices of actual transport paths. The other

state space is the primary sample space, where the algorithms operate on

sequences of numbers used for generating transport paths. While the two

state spaces are related by the sampling procedure of transport paths, all

existing MCMC rendering algorithms are designed to work within only

one of the state spaces. We propose a first framework which provides a

comprehensive connection between the path space and the primary sample

space. Using this framework, we can use mutation strategies designed for one

space with mutation strategies in the respective other space. As a practical

example, we take a combination of manifold exploration and multiplexed

Metropolis light transport using our framework. Our results show that the
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simultaneous use of the two state spaces improves the robustness of MCMC

rendering. By combining efficient local exploration in the path space with

global jumps in primary sample space, our method achieves more uniform

convergence as compared to using only one space.
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1 INTRODUCTION
Physically-based rendering with light transport simulation is widely

used nowadays. One class of simulation algorithms is based on
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Markov chainMonte Carlo (MCMC) [Veach andGuibas 1997].MCMC

rendering generates aMarkov chain of light transport paths to follow

an arbitrary user-defined target distribution. This target distribution

is defined according to the contributions of light transport paths

to the image, which allows MCMC algorithms to efficiently focus

computation on contributing paths. In rendering, a technique for

proposing the next state of a Markov chain is typically called a mu-

tation strategy. Recent work has proposed a variety of sophisticated

mutation strategies [Hachisuka et al. 2014; Jakob and Marschner

2012; Kaplanyan et al. 2014; Li et al. 2015].

TheMCMC rendering algorithms use either the path space [Veach

and Guibas 1997] or the primary sample space [Kelemen et al. 2002]

as the state space of aMarkov chain. The path space defines a path by

a sequence of vertices, and the algorithms mutate a path by directly
modifying its vertices. The primary sample space instead defines

a path by a sequence of numbers used to generate the path, and

indirectly mutates a path by modifying the corresponding sequence

of numbers. This sequence corresponds to numbers generated by

a pseudo-random number generator in regular Monte Carlo path

samplers, and can be mapped to a path by path tracing [Kajiya 1986]

or bidirectional path tracing [Lafortune and Willems 1993; Veach

and Guibas 1994] for example. Due to this fundamental difference

between the two state spaces, a mutation strategy for one space is

not applicable to the other space. For example, it is impossible to use

manifold exploration [Jakob and Marschner 2012] in the primary

sample space as it is designed to work on path vertices in the path

space. This situation prohibits us to take full advantage of all the

advanced mutation strategies within a single rendering algorithm.

We propose a framework to fuse the different state spaces in

MCMC rendering for the first time. The main idea is the use of

an inverse path sampler which acts as the inverse operation of a

regular path sampler. The inverse path sampler takes a complete

path as input and maps it to a corresponding sequence of numbers

in a unit hypercube. Since this mapping uses the inverse of the in-

verse cumulative distribution functions (CDFs) used in importance

sampling, it requires just the CDFs themselves which are often read-

ily available. Our formulation does not impose any modification

to mutation strategies themselves, making it easy to use it with

existing implementations. We tested our formulation for the com-

bination of manifold exploration [Jakob and Marschner 2012] and

multiplexed Metropolis light transport [Hachisuka et al. 2014]. The

results demonstrate that this combination robustly handles scenes

with different characteristics where using only one of the algorithms

fails. To summarize, our contributions are:

• A novel framework which fuses the two state spaces currently

used for Markov chain Monte Carlo rendering,

• Introduction of the concept of an inverse path sampler,

• Demonstration of MCMC rendering with a combination of mu-

tation strategies mixing both state spaces.

2 RELATED WORK
Light Transport Simulation. Rendering algorithms based onMonte

Carlo integration are primarily characterized by how they generate

paths connecting a light source to a sensor. Path tracing [Kajiya

1986] generates a path starting from the sensor, light tracing [Arvo

1986] traces from a light source, and bidirectional path tracing [Lafor-

tune and Willems 1993; Veach and Guibas 1994] from both sides

with deterministic connections of subpaths.

Another family of approaches is based on photon density esti-
mation [Shirley et al. 1995], such as (progressive) photon map-

ping [Hachisuka et al. 2008; Jensen 1996], which estimates illumina-

tion using the density of light subpath vertices. Recentwork [Georgiev

et al. 2012; Hachisuka et al. 2012] combines Monte Carlo integration

and photon density estimation into a single rendering algorithm.

We employ existing Monte Carlo integration approaches as path
samplers, which can generate a light transport path from a sequence

of numbers. A path sampler in our formulation can be any of the

existing approaches as long as they are based on the path integral

formulation [Veach 1998]. We introduce the inverse of such a path

sampler and show how it can be used in Markov chain Monte Carlo

(MCMC) rendering with fused state spaces.

MCMC in Path Space. Veach andGuibas [1997] introducedMarkov

chain Monte Carlo methods to rendering. The resulting algorithm,

Metropolis Light Transport (MLT), perturbs the vertices of a path

and generates a history of paths based on the Metropolis-Hastings

algorithm. Since MLT directly manipulates vertices, it works within

the path space of the path integral formulation.

Manifold exploration [Jakob and Marschner 2012] is also built on

the original MLT framework and extends its mutation strategy to

efficiently handle a chain of specular and highly glossy events. Half

vector space light transport [Hanika et al. 2015; Kaplanyan et al.

2014] represents paths by their endpoints and half vectors at the

interactions between them. This representation has been shown to

flatten the target sampling distribution, which makes it easier to

sample by Markov chain Monte Carlo algorithms.

Path space algorithms are often efficient at rendering certain

effects since we can explicitly consider characteristics of such effects

inmutations (e.g., caustics in the caustic mutation [Veach andGuibas

1997]). We show how to incorporate such efficient mutations into

the other class of MCMC rendering algorithms.

MCMC in Primary Sample Space. Kelemen et al. [2002] introduced

an alternative formulation of MLT based on the primary sample

space. The algorithm, primary sample space MLT (PSSMLT), indi-

rectly mutates paths by perturbing a vector of (random) numbers

that is used to generate paths. They showed how this formulation

significantly simplifies the MCMC process and flattens the target

distribution by utilizing the information of the probability den-

sity function of a given path sampler. Li et al. [2015] showed how

to achieve locally adaptive anisotropic mutations in the primary

sample space based on the approximation of Hessian-Hamiltonian

dynamics. The resulting algorithm demonstrates robust sampling

even in the presence of complex light transport paths.

If PSSMLT is used with bidirectional path tracing as a path sam-

pler, it generates a family of bidirectional paths, rather than a single

path such as MLT. This difference makes the connection between

the primary sample space and the path space ambiguous since one

sample in the primary sample space corresponds to a family of

paths. Hachisuka et al. [2014] showed that this ambiguity can be

resolved simply by extending the primary sample space by another

dimension, encoding the type of the used bidirectional technique.
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They showed how this multiplexed primary sample space leads to a

method that can distribute samples based on the weighted primary

sample spaces according to multiple importance sampling [Veach

and Guibas 1994]. We show how to combine the path space MLT

techniques and the primary sample space MLT techniques for the

first time.

Bridging Sampling Spaces. The half vector space [Kaplanyan et al.

2014] can be considered as yet another space and one possibility to

bridge the half vector space and the path space. We instead consider

bridging the primary sample space and the path space. Concurrent

works [Bitterli et al. 2017; Pantaleoni 2017] also use an inverse

mapping from the primary sample space to the path space. Although

their methods are different from ours, the underlying concept is

equivalent.

3 STATE SPACES OF MCMC RENDERING
This section briefly introduces the path space and primary sample

space variants of MLT. We also recapitulate the multiplexed primary

space, as it has beneficial properties that lead to our framework.

3.1 Path Space
Light transport simulation computes the solution of the path inte-
gral [Veach 1998]. It determines the intensity of the j-th pixel in the

image as the integral over the measurement contribution function

fj (x̄ ) with respect to the product area measure µ:

Ij =

∫
P

fj (x̄ )dµ (x̄ ), (1)

where P is the path space which comprises all paths of all possible

lengths (P ≡ ∪∞k=2
Pk ) and Pk denotes a sub-space containing paths

with k = [2, . . . ,∞) vertices. An individual path x̄ ≡ (x1, . . . ,xk ) ∈
Pk is defined as a sequence of points on the scene’s surfaces. Note

that we do not consider participating media in this work.

MLT [Veach and Guibas 1997] uses the Metropolis-Hastings algo-

rithm [Hastings 1970] to sample paths: the path space P serves as

the state space and MLT generates a sequence of samples that fol-

low f ∗/b as the target distribution. Here f ∗ is a scalar contribution
function (typically luminance) proportional to themeasurement con-

tribution f , and b ≡
∫
P
f ∗ (x̄ )dµ (x̄ ) is the normalization constant,

which is estimated with regular Monte Carlo techniques. Using this

sequence of samples, the estimate Îj becomes

Ij ≈ Îj ≡
b

N

N∑
i=1

f (x̄i )

f ∗ (x̄i )
. (2)

A tentative sample ȳ is generated based on the current path x̄i ∈ P
and according to the transition kernelTP , i.e., ȳ ∼ TP (x̄i → ·). For a
Metropolis-Hastings update, the path ȳ is accepted as the next state

x̄i+1 with an acceptance probability of min (1,a(x̄i → ȳ)) where

a(x̄i → ȳ) =
f ∗ (ȳ)TP (ȳ → x̄i )

f ∗ (x̄i )TP (x̄i → ȳ)
. (3)

Otherwise x̄i is kept as the current state (x̄i+1 = x̄i ).

Fig. 2. Relationship between the path space and the primary sample space
(left), and the multiplexed primary sample space (right). For primary sample
space, the random number ū is mapped to the path x̄ using the inverse
cumulative distribution function P−1. Multiplexed primary sample space
extends the primary sample space by the index of the sampling strategy
t corresponding to the strategy of the bidirectional path samplers. In this
example, a path with length three is mapped from ū with path connection
between the second and third vertices (t = 2).

3.2 Primary Sample Space
PSSMLT [Kelemen et al. 2002] simplified the original MLT algorithm

by using the space of uniform random numbers as the state space,

based on the observation that paths are sampled by a sequence

of random numbers (Fig. 2, left). This state space is denoted as

the primary sample space, described as the unit hypercube U =

[0,1]
O (k )

(O (k ) random numbers are normally required to define a

path of length k).
The relationship between a sample in the state space ū ∈ U

and a path x̄ ∈ P can be written as the inverse of the cumulative

distribution function P−1
: U → P. The actual mapping of ū to

a path P−1 (ū) is obtained by using the underlying path sampler

and using the random number sequence ū. With P−1
Eq. 1 can be

rewritten as

I =

∫
U

˜f (ū)
�����
dµ (x̄ )

dū

�����
dū =

∫
U

˜f (ū)
�����
dP−1 (ū)

dū

�����
dū =

∫
U

C̃ (ū)dū, (4)

where C̃ is the path throughput in primary sample space. We use

the tilde to explicitly express the dependence on random numbers ū
instead of the path space vertices x̄ , i.e., C̃ (ū) = C (P−1 (ū)) = C (x̄ ),
where C (x̄ ) = f (x̄ )/p (x̄ ) is the path contribution in path space.

Now using an appropriate scalar target function C̃∗ (ūi ) (the lu-
minance of C̃ (ū)), MCMC can generate a sequence of samples dis-

tributed according to C̃ (ū). That is, using a Markov chain ūi ∈ U
with N samples, we can compute an estimate ⟨I ⟩ of I (Eq. 4) as

⟨I ⟩ =
1

N

N∑
i=1

C̃ (ūi )

C̃∗ (ūi )/b
=

b

N

N∑
i=1

C̃ (ūi )

C̃∗ (ūi )
, (5)

where b =
∫
U
C̃∗ (ū)dū is the normalization constant, which again

is estimated with regular Monte Carlo techniques.

PSSMLT also uses the Metropolis-Hasting algorithm to generate

the next sample. Given a current state ūi , we first generate the next
tentative state v̄ from the proposal distribution q, i.e., v̄ ∼ TU (ūi →
v̄ ), which is accepted as ūi+1 with the probability:

a(ūi → v̄ ) =
C̃∗ (v̄ )TU (v̄ → ūi )

C̃∗ (ūi )TU (ūi → v̄ )
, (6)
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and ūi+1 = ūi otherwise. A symmetric proposal distribution avoids

the computation of the transition probabilities and Eq. 6 becomes

a(ūi → v̄ ) =
C̃∗ (v̄ )

C̃∗ (ūi )
. (7)

In general, there is no one-to-one mapping between primary

space and a path since one primary space sample can be mapped to

a set of paths (e.g., with bidirectional path tracing).

Multiplexed Primary Sample Space. Hachisuka et al. [2014] ex-

tended the formulation of PSSMLT to facilitate multiple impor-

tance sampling (MIS) [Veach and Guibas 1994] within this frame-

work (Fig. 2, right). MIS combines multiple sampling strategies

pt (x̄ )t=1, ...,M into an estimate I :

I =

∫
P

M∑
t=1

wt (x̄ ) f (x̄ )dµ (x̄ ) =
M∑
t=1

∫
P

wt (x̄ ) f (x̄ )dµ (x̄ ) (8)

≈

M∑
t=1

1

Nt

Nt∑
i=1

wt (x̄t,i )Ct (x̄t,i ), (9)

whereM is the number of techniques andwt (x̄ ) are the MIS weights

satisfying

∑M
t=1

wt (x̄ ) = 1, andCt (x̄t,i ) = f (x̄i )/pt (x̄ ) is the through-
put of the path x̄i generated with a technique t .

Given the sampling technique t , we can write the relationship be-

tween ū and x̄ with the mapping P−1

t associated with the technique

t . Similar to PSSMLT, Eq. 8 can be written using this mapping as:

I =
M∑
t=1

∫
U

w̃t (ū) ˜f (ū)
������

dP−1

t (ū)

dū

������
dµ (ū)

=

M∑
t=1

∫
U

w̃t (ū)C̃t (ū)dµ (ū) =

∫
U

M∑
t=1

w̃t (ū)C̃t (ū)dµ (ū).

(10)

Instead of usingU for each t as a state space, MMLT utilizes an ex-

tended space namedmultiplexed primary sample spaceU×T where

T = {1, . . . ,M }, facilitating the idea of serial tempering [Marinari

and Parisi 1992]. This method explores the state spacesU parame-

terized by the parameter t , and also facilitates Markov chain updates

between the two different parameters t and ū. Using this method, we

can sample the states according to

∑M
t=1

w̃t (ū)C̃t (ū) and estimate

the last expression in Eq. 10 using a single Markov chain.

The Metropolis-Hasting update for MMLT considers two types

of mutations: (1) a mutation within the same technique, and (2)

a mutation among the different techniques. Both types of muta-

tions can be considered in a single update with the acceptance ratio

min (1,a([ū,t]→ [v̄,t ′])) using

a([ū,t]→ [v̄,t ′]) =
w̃t ′ (v̄ )C̃t ′ (v̄ )TU ([v̄,t ′]→ [ū,t])

w̃t (ū)C̃t (ū)TU ([ū,t]→ [v̄,t ′])
. (11)

3.3 Discussion
MLT based on the path space is good for local explorations, as it can

selectively re-create parts of a path. PSSMLT variants usually need

to re-trace all path segments after updating the random numbers.

On the other hand, path space MLT has problems with global dis-

covery of important “islands” in path space. This is because the only

mutation strategy designed to fulfill ergodicity, the bidirectional

Fig. 3. Illustration of path sampling. A sequence of numbers ū = (u1, u2, ...)
is successively transformed by inverse CDFs P−1

t . This process creates the
path vertices x1, x2, ... one after the other, depending on the chosen tech-
nique t and the path vertices that have already been sampled so far.

mutation, needs to fix the number of eye and light subpath vertices

upfront. This is required to be able to evaluate the transition kernel

T (x̄i → .), and often leads to very low acceptance rates.

This a-priori decision for one particular technique is similar in

spirit to MMLT, but MMLT also performs a local exploration of the

state space. The MMLT formulation has one more property which

is important to us: we are able to give a mapping from random

numbers to path vertices.

4 FUSING THE STATE SPACES
Our goal is to enable the use of mutation strategies from different

state spaces, in particular from the (multiplexed) primary sample

space and the path space as in MLT, in a single framework. We

explain how to incorporate path space mutations into MMLT by

introducing the concept of an inverse path sampler.

4.1 Paths to Numbers
An inverse path sampler returns a sequence of numbers ū from a

given path x̄ . While such a mapping cannot be uniquely determined

in PSSMLT with the BDPT sampler, the multiplexed primary sample

space leads to a straightforward derivation as follows.

Revisiting Path Samplers. In order to find such an inverse map-

ping, we need to revisit the precise meaning of a path sampler

P−1

t (ū) = x̄ . In general, one can factorize a multivariate CDF Pt (x̄ ) =
Pt (x1, · · · ,xk ) into a product of conditional CDFs:

Pt (x1, · · · ,xk ) =

Pt (x1)Pt (x2 |x1) · · · Pt (xk |x1, · · · ,xk−1
),

(12)

where Pt (xk |x1, · · · ,xk−1
) is a CDF of xk given x1, · · · ,xk−1

. Since

all the conditional CDFs are different CDFs, Pt (x2 |x1) strictly should
bewritten as Pt,x1

(x2 |x1) for example.We use the notation Pt (x2 |x1)
throughout this paper for brevity.
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Fig. 4. Illustration of inverse path sampling. Analogous to creating a path
from random numbers (Fig. 3), we can invert the process and successively
compute random numbers which would have created the given path via path
sampling. This is possible if the CDFs to create the vertices are bijections.

Using this factorization, the multivariate variant of inverse trans-

form sampling generates (x1, · · · ,xk ) ∼ pt (x1, · · · ,xk ) by a se-

quence of inverse transform sampling (see Fig. 3):

x1 = P−1

t (u1)

x2 = P−1

t (u2 |x1)

· · ·

xk = P−1

t (uk |x1, · · · ,xk−1
).

(13)

This factorization approach, in general, is not very practical since

an analytical form of the inverse of a conditional CDF is not often

available. In typical Monte Carlo rendering systems, however, we

can rely on this exact approach by generating each vertex xi based
on the previous vertices xi−1, · · · ,x1 (usually only on xi−1 and xi−2)

according to a PDF proportional to the BRDF at xi−1.

This approach is often denoted as P−1

t (ū) = x̄ , but it is not precise.

The exact meaning of P−1

t (ū) = x̄ is the above sequential approach.

We folded common cases where we need to use multiple numbers

to sample a vertex in each CDF for the sake of brevity, but one

can generally also factorize them into conditional univariate CDFs

similar to above.

Inverse Path Samplers. This precise definition leads to the follow-

ing inverse sampler from x̄ to ū = (u1, · · · ,uk ) (see Fig. 4):

Pt (x1) = u1

Pt (x2 |x1) = u2

· · ·

Pt (xk |x1, · · · ,xk−1
) = uk .

(14)

We assume that each CDF is already available and can be evaluated

easily. This assumption holds in practice since we usually define the

CDF first in order to derive its inverse in path samplers. Note that

the technique index t is unaffected due to the use of the multiplexed

primary sample space.

While the definition of inverse path samplers might look trivial

after the fact, such CDFs have not been used for practical purposes

in rendering so far. Our work shows that they can be used for fusing

the state spaces in MCMC rendering. We provide some examples of

CDFs and how they can be trivially defined.

4.2 Examples of Inverse Path Samplers
Example 1: Cosine distribution. The cosine distribution is used to

sample a direction according to the cosine of the angle from the

surface normal. Since there are multiple algorithms to sample such a

direction, we provide an example based on Malley’s method [Malley

1988]. The method uses the polar coordinates (r ,θ ) of the projected
direction onto the tangent plane around the normal. The PDF of the

cosine distribution in this case is p (r ,θ ) = r/π , so the marginal and

conditional densities for r and θ are

p (r ) =

∫
2π

0

p (r ,θ )dθ = 2r p (θ |r ) =
p (r ,θ )

p (r )
=

1

2π
. (15)

The mapping from (r ,θ ) to (u1,u2) is

u1 = P (r ) =

∫ r

0

p (r )dr = r2,

u2 = P (θ |r ) =

∫ θ

0

p (θ |r )dθ =
θ

2π
,

(16)

Example 2: Uniform sampling on a triangle. Uniform sampling

on a triangle is often used to generate an initial vertex of a light

path. Similar to the previous example, we sample a point in different

coordinates and convert to the surface point. Typically, we transform

to the barycentric coordinates of the isosceles right triangle for this

purpose. Given a point with barycentric coordinates (b1,b2), the
mapping from (b1,b2) to (u1,u2) is

u1 = P (b1) =

∫ b1

0

p (b1)db1 = 2b1 − b
2

1
,

u2 = P (b2 |b1) =

∫ b2

0

p (b2 |b1)db2 =
b2

1 − b1

.

(17)

Example 3: Tabulated PDF. In some cases, such as sampling a

direction according to an environment map, we generate samples

according to a tabulated PDF. Such a tabulated PDF p (x ) can be

defined as a piecewise-constant function with N bins over [x0,xN ]:

p (x ) =



pj x ∈ [x0,xN ]

0 otherwise

, (18)

where j = ⌊N x−x0

xN −x0

⌋ + 1. We consider a one dimensional CDF for

simplicity. The CDF in this case becomes a piecewise-linear function,

and the mapping from x to u is

u = P (x ) =




Pj + pjN (x − j−1

N ) x ∈ [x0,xN ]

0 x ∈ x < x0

1 x ∈ x > xN

, (19)

where Pj =
∑j−1

k=1

pk
N . The summation for Pj can be accelerated by

precomputing Pj and finding a bin index using binary search.

Example 4: GGX distribution. There are various microfacet normal

distributions and the shape of the distributions can be complex.

The distributions, however, are well designed to make it possible to

derive CDFs for importance sampling. The GGX distribution [Walter

et al. 2007] controls the width of the distribution with a parameter

α . The PDF in spherical coordinates (θ ,ϕ) is

p (θ ,ϕ) =
α2

sinθ

π cos
3 θ (α2 + tan

2 θ )2
. (20)
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Fig. 5. We perform path space mutations by first converting the Markov
chain state from our base space (multiplexed primary sample space) to path
space. This is done using the standard Monte Carlo path sampler, applying
P−1

t to the random number sequence. We then mutate the state in path
space via TP as regular MLT does, without any modifications. Lastly, we
convert the resulting path back to the base state space by inverting the
path sampling process and applying Pt to the path to compute the random
number sequence.

Following similar steps as previous examples, we obtain the mar-

ginal and conditional CDFs for θ and ϕ, and the mapping from (θ ,ϕ)
to u = (u1,u2) is

u1 = P (θ ) =

∫ θ

0

p (θ ,ϕ)dθ =
tan

2 θ

α2 + tan
2 θ
,

u2 = P (ϕ |θ ) =

∫ ϕ

0

p (ϕ |θ )dϕ =
ϕ

2π
.

(21)

4.3 Fusing State Spaces with Inverse Path Samplers
With the definition of inverse path samplers, we now have a map-

ping between the path space P and the primary sample spaceU for

simple unidirectional samplers. Since we keep the technique t fixed
up front, we can now also formulate a mapping between the two

state spaces. In the following we consider paths with equal lengths

since the change of path lengths would complicate the inverse map-

ping. Similar to the implementation of MMLT by Hachisuka et

al. [2014], we use a separate Markov chain for each path length. In

the following discussion, we opt to use the multiplexed primary

sample space as the base space since we found that it naturally

incorporates our formulation.

Fig. 5 illustrates this process: in order to perform amutation in the

path space, we first map the current state (ū,t ) to a path x̄ = P−1

t (ū)
using the current sampling strategy t and the path sampler. We

then apply a mutation and obtain the new path ȳ ∈ P according to

TP (x̄ → ȳ). Using the inverse path sampler, we convert it back toU

with v̄ = Pt (ȳ). The transition kernel in the path space TP (x̄ → ȳ)
is transformed to

TP (x̄ → ȳ) = T̃P,t (ū → v̄ )
������

dP−1

t (v̄ )

dv̄

������
, (22)

where T̃P,t (ū → v̄ ) = TP (P
−1

t (ū) → P−1

t (v̄ )). The acceptance ratio
for the mapped paths then becomes

a([ū,t]→ [v̄,t]) =
w̃t (v̄ )C̃t (v̄ )T̃P,t (v̄ → ū)

����
dP−1

t (ū )
dū

����
w̃t (ū)C̃t (ū)T̃P,t (ū → v̄ )

����
dP−1

t (v̄ )
dv̄

����

, (23)

where
���dP
−1 (ū)/dū��� = 1/p̃ (ū) and ���dP

−1 (v̄ )/dv̄ ��� = 1/p̃ (v̄ ) by the

definition of CDFs. Eq. 23 is in fact equal to

a([ū,t]→ [v̄,t]) =
w̃t (v̄ ) ˜f (v̄ )T̃P,t (v̂ → û)

w̃t (ū) ˜f (ū)T̃P,t (û → v̂ )
(24)

since we have

C̃t (v̄ )
�����
dP−1 (ū)

dū

�����
=
C̃t (v̄ )

p̃ (ū)
=

˜f (v̄ )

p̃ (ū)p̃ (v̄ )
(25)

C̃t (ū)
�����
dP−1 (v̄ )

dv̄

�����
=
C̃t (ū)

p̃ (v̄ )
=

˜f (ū)

p̃ (ū)p̃ (v̄ )
. (26)

We thus do not need tomodify existing implementations of mutation

strategies in order to use them in conjunction with another space.

4.4 Handling Deterministic Cases
Deterministic distributions such as perfect reflectors become a PDF

with a delta function. We cannot uniquely determine the inverse

mapping in this case, since no component of ū was actually used

to generate a sample from such distributions. To solve this issue,

we use the lower dimensional subspaceU∗ ⊂ U excluding all the

components related to the delta distributions, which corresponds to

a specular manifold in the path space [Jakob and Marschner 2012].

Using this subspace, the function P (ū∗) defined on U∗ becomes

invertible. We fill the rest of the components with uniform random

numbers, which is a special case of reversible jump MCMC [Green

1995]. This approach is also equivalent to lazy mutation in PSSMLT,

which also accounts for the case where there is a difference in the

number of dimensions between MCMC states.

The transition kernel in this case becomes

TP (x̄ → ȳ) = T̃P,t (ū → v̄ )
������

dP−1

t (v̄∗)

dv̄∗

������

�����
d (v̄∗, r̄ )

dv̄

�����

= T̃P,t (ū → v̄ )
������

dP−1

t (v̄∗)

dv̄∗

������
. (27)

The conversion from (v̄∗, r̄ ) to v̄ is just a permutation so we have

����
d (v̄∗,r̄ )
dv̄

���� = 1. This eventually yields the same equation as Eq. 24.

It is also possible to handle layered materials in a similar way as

described above. Instead of reflection or transmission for specular

surfaces, we can assign a selected lobe, e.g., diffuse or glossy, as a

material type. When we want to convert a path to random numbers,

we can then choose a uniformly distributed random number in

the appropriate range that maps to this lobe. This treatment is

similar in spirit to different mathematical formulations of concurrent

works [Bitterli et al. 2017; Pantaleoni 2017].

5 IMPLEMENTATION
We implemented our proposed method in our renderer, including

primary sample space mutation techniques as well as the path space

mutation techniques in MLT [Veach and Guibas 1997] and manifold

exploration [Jakob and Marschner 2012]. As for manifold explo-

ration, we only implemented the variant for specular surfaces and

omitted handling of glossy surfaces. The path space mutation tech-

niques do not contain any code specific to our technique, so we

can reuse them for MLT without modifications. Similar to MMLT,
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Algorithm 1 The mutation step with the combined proposal distri-

bution. The mutation is limited to maintain the path length. Given

[ū,t] ∈ U × T as the current state, this algorithm computes the

next state [ū∗,t∗].

1: if primary space space mutation is selected then
2: [v̄,t ′] ∼ TU ([ū,t]→ ·)

3: a ← min

(
1,

w̃t ′ (v̄ )C̃t ′ (v̄ )TU ([v̄,t ′]→[ū,t ])

w̃t (ū )C̃t (ū )TU ([ū,t ]→[v̄,t ′])

)
▷ Eq. 11

4: if Random() < a then
5: [ū∗,t∗]← [v̄,t ′]
6: else
7: [ū∗,t∗]← [ū,t]
8: end if
9: else
10: x̄ ← P−1

t (ū)
11: ȳ ∼ TP (x̄ → ·)

12: a ← min

(
1,

w̃t (v̄ ) ˜f (v̄ )T̃P,t (v̂→û )
w̃t (ū ) ˜f (ū )T̃P,t (û→v̂ )

)
▷ Eq. 24

13: if Random() < a then
14: [ū∗,t∗]← [Pt (ȳ),t]
15: else
16: [ū∗,t∗]← [ū,t]
17: end if
18: end if

our method separates the integral into path lengths and generates

one Markov chain for each path length. Therefore the bidirectional

mutation which involves a change in path length cannot be used in

combination with our technique. Instead we implemented a fixed

length variant of the bidirectional mutation. Similar to MLT, our

method combines various mutation techniques and thus the selec-

tion of the mutation strategy has a great influence on the efficiency.

Following the suggestion in Section 5.3.4 in the MLT paper [Veach

and Guibas 1997], we randomly select a valid mutation strategy

given the current state to avoid meaningless selections which would

always be rejected. We parallelize the algorithm by computing sev-

eral Markov chains assigned to different threads.#45

The core of the technique is almost the same as MMLT. We main-

tain the state in the multiplexed primary sample space and initialize

it with random numbers. In our method, on the other hand, the

mutation process in MMLT is replaced by Algorithm 1. The entire

flow of the algorithm is a mixture of two Metropolis-Hastings up-

dates for each state space. One difference is that we need to multiply

MIS weights in addition to the measurement contribution function

in Eq. 24. Obviously, the mapping functions introduce additional

computational overhead for the path space mutations. To alleviate

this issue we maintain the mapped state P−1 (ū) as a cache as well
as the state ū in the process of the mutations.

When going from path space to primary sample space, we need to

decide on a technique t . The choice does not affect the correctness
of the algorithm. It would, for instance, be possible to importance

sample t based on theMIS weight of a given path, i.e., the acceptance

probability of the tentative sample in the Markov chain. In our

current implementation, we always initialize the Markov chain with

a multiplexed primary sample space state, such that it comes with

a valid t . If we choose a path space mutation, we will leave the

technique t and the path length untouched, such that t is still valid
when going back to multiplexed primary sample space.

6 RESULTS
Setup. We implemented MMLT [Hachisuka et al. 2014],

MLT [Veach and Guibas 1997], and the proposed algorithm in the

same rendering system. For mutation techniques, we implemented

small and large step mutations in the primary sample space, and

the bidirectional mutations, lens/caustic/multi-chain perturbations,

and manifold exploration [Jakob and Marschner 2012] as the path

space mutations. The reference images are rendered using BDPT

or vertex connection and merging [Georgiev et al. 2012]/unified

path sampling [Hachisuka et al. 2012] with more than six hours of

computation for each scene. We conducted all the experiments on a

machine with an Intel Xeon E5-2698 v3 at 2.3 GHz using 32 threads.

The comparisons are all equal-time (20 minutes) with the maxi-

mum path length between 9–20 depending on the scenes. We man-

ually tuned parameters for mutation techniques to achieve the best

results for MMLT and MLT. We then used the same set of best pa-

rameters for our methods. The code for our proposed method will

be available on our website.

Experiments. Fig. 1 compares rendered images by MMLT, MLT,

and our combination of both. We rendered two different scenes with

different characteristics to highlight the need for fusing the state

spaces. The door scene contains diffuse, specular, and glossy sur-

faces indirectly illuminated by a light leaking through the opening

door. MLT handles this scene well because it can partially regen-

erate a path depending on the selection of the mutation strategies.

The performance of MMLT is worse for this scene because MMLT

needs to re-trace the complete path for every mutation. The neck-
lace scene consists mainly of glossy surfaces illuminated by light

sources of varying sizes causing complex interreflection between

glossy surfaces. MMLT is effective for this scene because the tar-

get distribution includes the MIS weights. On the other hand, MLT

tends to get stuck in local subspaces and generates non-uniform arti-

facts in the rendered image. In both cases, the result shows that our

method can alleviate this robustness issue by combining mutation

techniques from the two different state spaces.

We show two more scenes in Figs. 7 and 8. The Salle de bain
scene contains diffuse and glossy surfaces illuminated with an area

light source. Specifically the scene contains mirror models with low

glossiness. This scene successfully captures the trade-off between

MMLT and MLT in a single image. MMLT can render the part

of the image visible from the mirror model more efficiently than

MLT. On the other hand, MLT can render the part containing diffuse

surfaces better thanMMLT. TheGrey andWhite Room scene consists

of diffuse and glossy surfaces illuminated with several area light

sources. This scene shows similar characteristic as the door scene
and MLT outperforms MMLT. Again in this scene, our method can

render the image with similar performance as MLT, the better one.

Error Analysis. Fig. 6 shows the pixel-wise error distributions for
the images in Fig. 1 compared to the references. We also show the

error images for the scenes in Figs. 7 and 8. We used relative root

mean square error (rRMSE) as an error metric. Our method exhibits
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Reference MMLT MLT Ours

Error: 1.1056 Error: 0.2520 Error: 0.3537

Error: 0.3658 Error: 1.3433 Error: 0.6042

D
oo
r

N
ec
kl
ac
e

0.0

1.0

0.0

0.8

Fig. 6. Comparisons of the errors for the scenes in Fig. 1. We show the relative RMSE for each images, and also show the pixel-wise relative error. We can
observe that the combined mutation techniques with our method exhibit the error distribution similar to the better one of MMLT or MLT.#45 Although the
errors are suboptimal compared to the better one for the respective situation, this figure indicates our proposed method can moderately alleviate trade-offs
between the two techniques, also in terms of the errors.

similar error distributions as the better one in both scenes. In both

cases, however, rRMSE values are larger than the respective better

method, and some regions of the images display higher error than

the better one.

We want to stress that achieving the best result among all is not

our claim. The practical benefit is the generality to provide good

performance for a wide spectrum of scenes, namely improved ro-
bustness, which is possible only by combining various mutation

techniques. This context is different from multiple importance sam-

pling which aims at an optimal combination of different sampling

techniques. While it would be ideal if we could select an optimal

mutation strategy (or sets thereof) and the optimal space for a given

scene, a combination of mutation strategies in different spaces has

been just impossible to begin with, prior to our work. The opti-

mal combination of different mutation strategies also remains as an

interesting direction of the future work.

7 DISCUSSION AND LIMITATIONS

7.1 Discussion
Computational cost. When switching from one space to another,

our algorithm requires extra computational cost to convert a se-

quence of numbers in the primary sample space to a path, and then

convert a path back to a sequence of numbers. This computational

cost is, however, negligible compared to the entire render time. For

instance, the conversion takes only 0.03% of the rendering time

for the necklace scene in Fig. 1. The expected number of required

transitions was 0.131 per single mutation for this scene. In addition,

as was discussed in Section 5, it is possible to cache some of these

computations.

Combination with other state spaces. We focused on combining

the primary sample space and the path space as they are major state

spaces used in MCMC rendering. The half-vector space [Kaplanyan

et al. 2014] is another state space that has its own advantages over

the path space. While we have not implemented their techniques in

the rendering system we used for this paper, it should be straight-

forward to combine them by a composition of the transformations

between domains (e.g., half vector space to path space to primary

sample space, and vice versa).

Non-bijective sampling procedures. Our solution of handling deter-
ministic cases generalizes to more cases where the primary sample

space formulation consumes more numbers than the resulting di-

mensions in the path space. A concurrent work [Pantaleoni 2017]

provides a mathematical formulation of a similar process. There

is also an interesting connection to using expected values in the

measurement contribution when evaluating the acceptance proba-

bility [Kronander et al. 2015], which might lead to a more efficient

approach for handling trans-dimensional moves in general.

Numerical precision. When working in the primary sample space,

extra care should be taken to avoid problems with numerical preci-

sion. For example, when mapping an outgoing direction to random

numbers for BRDF sampling, numerical errors can accumulate and

introduce bias. It is essential to work in double precision and add

numerical guards against error accumulation and drifting. We im-

plemented two techniques to assess numerical precision.

Firstly, during initial path sampling, we use only the valid samples

based on the round-trip values. Given the candidate of the initial

state u, we compute x̄ = P−1

t (ū) and the round-tripped initial state

Pt (x̄ ). We decided not to use ū as an initial state if C̃ (Pt (x̄ )) has
zero contribution. This test in the initialization phase can introduce

MCMC start-up bias, which will vanish while converging as the

Markov chain runs for longer. Without this test, the chain might

get stuck in the same state, depending on the combination of the

mutation strategies. Second, in the case of path space mutation, we

also check the round-trip values for the mutated path x̄ . We check if

C (P−1

t (Pt (x̄ ))) is non-zero, and the proposal is rejected immediately

if the condition is not met.
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MMLTMMLT MLTMLT OursOurs

MMLT, Error 0.1740MMLT, Error 0.1740 MLT, Error 0.6595MLT, Error 0.6595 Ours, Error 0.1957Ours, Error 0.1957

Fig. 7. The Salle de bain scene (equal time comparison 20 min). A set of mutation strategies employed in MLT has problems with the mirror (orange inset)
while MMLT is more noisy on the floor. Our combination alleviates both issues. Also note the reduced clumping of samples in the edges of the room as
compared to MLT and the reduced noise in front of the first washing basin as compared to MMLT.

This verification process can be optimized because P−1

t (Pt (x̄ ))
can be reused if the next mutation is a path space mutation. Similarly,

this early rejection in the MH update can introduce bias.

7.2 Limitation
One limitation of our formulation is the requirement of an analytical

mapping between a path to a sequence of numbers. This requirement

is particularly violated for rejection sampling such as Woodcock

tracking. In this case, we do not have an analytical form of (inverse)

cumulative distribution functions since rejection sampling does not

rely on the existence of such analytical solutions. It is still unclear

how to handle cases where an analytical form of such a mapping is

not easily accessible.

8 CONCLUSION
We proposed a framework to fuse the path space and the primary

sample space of MCMC rendering for the first time. We explained

how to formulate the connection between these two state spaces by

introducing a novel mapping from a path to a sequence of numbers.

This mapping is the inverse of existing path samplers and we thus

named them as inverse path samplers. We show how such an inverse

mapping can be formulated with cumulative distribution functions

of samples which are oftentimes readily available as we already

use inverse cumulative distribution functions for path samplers.

Inverse path samplers allow us to use mutations designed only

for one state space in another state space without modifying the

mutation algorithms themselves. The results demonstrate that the

fusion of two state spaces brings a practical benefit of robustness

to different scene configurations, even when the use of one state

space alone fails. Our framework should be immediately useful for

existing MCMC rendering systems since it essentially introduces

new mutation strategies in each state space without modifying each

implementation. We believe that our framework leads to a new

family of MCMC rendering methods since it provides a well-defined

connection between two state spaces.
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