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ABSTRACT

The light transport simulation has been one of the major topics in computer graphics
from the very beginning of the field, supported by insatiable demand of photorealistic im-
age synthesis in various industries including movie industries, game industries, etc. The
light transport simulation is formulated as solutions of the equation called rendering equa-
tion. The problem of numerically solving the rendering equation is called the light transport
problem. We focus on the two problem domains in light transport: the simulation, and the
modeling of the input of the light transport simulation. The simulation part of light transport
simulation determines how we actually solve the rendering equation numerically, where the
efficiency of the simulation is the major challenge. On the other hand, the modeling part of
light transport simulation determines how the components of the input scene aremathemati-
cally defined, where the accuracy of resemblance to the actual physical objects is challenging.

Among the challenges of the light transport simulation, we focus on two problems. First,
in the domain of simulation, we focus on improving efficiency of the light transport simula-
tion using Monte Carlo methods, which is de facto standard approach for photorealistic ren-
dering. Second, in the domain of modeling, we focus on improving accuracy of the spectral
reflectance reconstruction from a tristimulus values, which is one of the important building
blocks in spectral rendering because the commonly available data is defined in tristimulus
values (e.g., RGB colors).

We tackled these problems by bridging different spaces in light transport simulation. In
this thesis, we focus on three different spaces and proposed the methods to bridge the spaces
using different approaches to achieve the goals.

1. The first method bridges the strategy spaces of light transport simulation which de-
termine the solution space of the Monte Carlo rendering algorithms. The efficiency of
the light transport simulation is known to be influenced by the selection of the render-
ing algorithms according to the input scene. However, the selection of the algorithms
can be cumbersome because the users need to know the detail of each algorithm. The
proposed method solves this issue by blending the solutions of the two different ren-
dering algorithms using a machine learning approach.

2. The second method bridges the state spaces of Markov chain Monte Carlo (MCMC)
rendering. Current MCMC rendering is built upon the two different state spaces with
different mathematical background. While the two approaches are related by the sam-
pling of transport paths, all existingMCMC rendering algorithms are designed towork
within only one of the state spaces. We propose the first framework to bridge two state
spaces. Using this framework, we can use mutation strategies designed for one space
in the other space.

3. The third method bridges the chromatic spaces which determines the representation
of spectra to improve the accuracy in the spectral reflectance reconstruction. The ex-
isting approaches in computer graphics are only based on the simple heuristics and
ignores the actual shape of the measured spectra. Based on the observation from the



color science field, we propose a spectral reconstruction method that can faithfully
reproduce the shape of the spectra as well as the converted tristimulus values. The
method facilitates the bridge between the original and lower dimensional representa-
tion of the spectra obtained with the knowledge of the measured spectra.

From the results of three methods, we observed each of the methods faithfully achieve the
goals of improving the efficiency or the accuracy in respective problem domains. We hope
the insights from our study can be a step toward the future evolution of the light transport
simulation.



論文要旨

光輸送シミュレーションは映画産業,ゲーム産業等,様々な産業における写実的画像生

成の飽くなき需要に支えられ,コンピュータグラフィックスの黎明から主な研究分野の一

つである. 光輸送シミュレーションはレンダリング方程式と呼ばれる方程式の解として

定式化され,レンダリング方程式を数値的に解くことは光輸送問題と呼ばれる.光輸送シ

ミュレーションに関連して,本稿ではふたつの問題のクラスに着目した. ひとつはシミュ

レーションそのものの設計,もうひとつはシミュレーションの入力のモデル設計である.

シミュレーション設計はレンダリング方程式を実際にどのように解くかに着目し,シミュ

レーションの効率を高めることが挑戦となる. 一方でモデル設計は入力となるシーンの

構成要素がどのように数学的に定義されているかに着目し,いかにモデルの現実の物体

に類似しているかを意味する物理的正確さを達成するかが挑戦となる.

これらの光輸送シミュレーションにおける挑戦において,本稿ではふたつの問題に着

目した.ひとつはシミュレーション設計における問題で,写実的レンダリングにおいて事

実上の標準であるモンテカルロ法を用いた光輸送シミュレーションの効率向上を行うこ

とである.もうひとつがモデル設計における問題で, RGB等の三原色から分光反射率の再

構築に着目する. これはスペクトルレンダリングにおいて重要な構成要素のひとつであ

り,多くの利用可能なデータが三原色によって定義されるため必要となる.

本稿ではこれらの問題に対し,光輸送シミュレーションにおける異なる空間を繋ぐこ

とで解決を図った. 特に以下の 3つの空間に着目し,ぞれぞれ異なる手法を提案した.

1. 一つ目の手法は,モンテカルロ法を用いたレンダリング手法の解空間によって定め

られる,光輸送シミュレーションの戦略空間 (strategy space)同士を繋ぐ. 光輸送シ

ミュレーションの効率は入力となるシーンに応じてレンダリング手法に依存する

ことが知られているが,このような手法の選択は使用者が手法の詳細について知る

必要があるため困難な場合がある. 提案法ではこの問題を機械学習を用いて 2つ

の異なる手法の解を混ぜ合わせることで解決を図った.

2. 二つ目の手法は,マルコフ連鎖モンテカルロ法 (MCMC法)を用いたレンダリング

手法における状態空間 (state space)同士を繋ぐ. 現在のMCMC法を用いたレンダ

リング手法は主に二つの異なる数学的背景を持つ状態空間上で定義される. これ

ら二つのアプローチは光の経路のサンプリングで関連しているが,ふたつを組み合

わせることはできない. 提案法ではこの 2つの状態空間を繋ぐ手法をはじめて提

案する. 提案するフレームワークを用いることにより,ひとつの状態空間で定義さ

れた変異手法をもう一つの空間で使用できるようになる.

3. 三つ目の手法は,分光反射率の再構築の精度を向上させるために,スペクトルを表

現する色彩空間 (chromatic space)同士を繋ぐ.コンピュータグラフィックスで用い

られている既存手法は簡易なヒューリスティックを用いて再構築を行うが,実際の

スペクトルの形を考慮しない手法であった. 提案法では色彩工学の知識を用いる



ことにより,再構築されたスペクトルから得られる三原色とともにスペクトルの形

もうまく再現できる手法を提案する. 本手法ではオリジナルのスペクトル表現と

測定されたスペクトルの情報に基づいた低次元のスペクトル表現を繋ぐことを活

用した.

これら 3つの手法の結果から,各々の問題のクラスにおいて効率,正確の目標をそれぞれ

達成していることが観察された.本研究から得られた知見が将来の光輸送シミュレーショ

ンの発展に寄与することを期待する.



Acknowledgements

First of all, I want to expressmy deepest gratitude tomy advisor ToshiyaHachisuka
who inspires my own interest in the compute graphics and guides me throughout my
PhD study. He always helps me with stimulating discussions and suggesting inter-
esting research directions through a number of research projects in my PhD period.
From him, I could learn a lot of knowledge on the research on computer graphics
as well as how to organize myself as a researcher. I am sure my current sense of
research is owed to his great attitude to the research.

I would like to thank the thesis committee members: Masayuki Inaba, Shigeru
Chiba, Takeo Igarashi, Takayasu Matsuo, Hideki Nakayama for their insightful com-
ments on the thesis from the point of view in the various research fields.

I would like to thank my colleagues in Computer Graphics Group in The Uni-
versity of Tokyo, including Sadashige Ishida, Issei Takarada, Sabyasachi Mukherjee,
Jamorn Sriwasansak, Igor Zavialov, Rex West, and many others. I really like the
group and I pretty much enjoyed daily conversations among the members. Espe-
cially, I greatly thank Adrien Gruson for the discussion on the research, Masafumi
Yamamoto for collaborating one of the research projects contained in the thesis.

During my PhD study, I was very fortunate to have opportunities to visit two
research groups: Compute Graphics Group at Karlsruhe Institute of Technology and
Charles University in Prague. I am grateful to Carsten Dachsbacher and Jaroslav
Křivánek for giving me a chance to visit their groups. I also would like to thank the
group members for the daily conversation or the discussion on the research during
my visit. I also have great opportunities to collaborate with researchers on several
research projects. I am grateful to Martin Šik, Shinichi Kinuwaki, Anton Kaplanyan,
Johannes Hanika for the fruitful discussion and the guidance to the higher quality
in the collaborated projects.

Last but by no means least, I would like to thank my parents for their support
and encouragement over years, as well as during my PhD period. The random talks
with my parents is pretty relaxing to me. My thesis would not be possible without
their sincere support and encouragement.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Bridging Representative Spaces . . . . . . . . . . . . . . . . . 2
1.2.2 Problem Definition And Representative Spaces . . . . . . . . 3
1.2.3 Original Contribution . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory of Light Transport 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Domains And Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Rendering Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Monte Carlo Integration 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Integration With Monte Carlo Method . . . . . . . . . . . . . . . . . 23
3.3 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Sample Placement . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Multiple Importance Sampling . . . . . . . . . . . . . . . . . 26

3.4 Integration With Markov Chain Monte Carlo Method . . . . . . . . . 27

4 Numerical Solutions of Light Transport 30
4.1 Early History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Deterministic to Stochastic . . . . . . . . . . . . . . . . . . . 30
4.1.2 FEM Based Rendering . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Light Transport Simulation Based on Path Sampling . . . . . . . . . . 33
4.2.1 Estimation With Path Sampling . . . . . . . . . . . . . . . . . 34

ix



4.2.2 Designing Path Sampler . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Sampling Subpaths . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Classification of Path Sampling Techniques . . . . . . . . . . 39
4.2.5 Combining Multiple Path Sampling Strategies . . . . . . . . . 41
4.2.6 Path Reusal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Bridging Strategy Spaces of Light Transport Simulations 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Automatic Blending with Path Features . . . . . . . . . . . . . . . . . 48

5.3.1 Path Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Optimal Blending Weights . . . . . . . . . . . . . . . . . . . . 49

5.4 Regression Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.1 Alternative to Blending . . . . . . . . . . . . . . . . . . . . . 57
5.6.2 Comparison to Neural Networks . . . . . . . . . . . . . . . . 58
5.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Bridging State Spaces of Markov Chain Monte Carlo Rendering 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 State Spaces of MCMC Rendering . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Path Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Primary Sample Space . . . . . . . . . . . . . . . . . . . . . . 66
6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Fusing the State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 Paths to Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.2 Examples of Inverse Path Samplers . . . . . . . . . . . . . . . 71
6.4.3 Fusing State Spaces with Inverse Path Samplers . . . . . . . . 73
6.4.4 Handling Deterministic Cases . . . . . . . . . . . . . . . . . . 74

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



6.7.2 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Bridging Chromatic Spaces For Spectral Reflectance Reconstruction 82
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4.1 Tristimulus Colors . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.2 Representation of Measured Spectra . . . . . . . . . . . . . . 87
7.4.3 Reconstruction of Spectra via PCA . . . . . . . . . . . . . . . 88
7.4.4 Hierarchical Chromatic Clustering . . . . . . . . . . . . . . . 90

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Conclusion 102

References 104

xi



Chapter 1

Introduction

1.1 Motivation

1.1.1 Background

Rendering is a long-standing concept in the field of computer graphics from the very
beginning of the field. In an abstract view, the rendering, or more specifically 3D ren-
dering, can be considered as a process of computation which inputs a description of
the virtual world called the scene, and outputs a 2D image which provides a depic-
tion of the virtual world. Rendering is imperative in computer graphics because ev-
ery computer-generated model or animation eventually needs to be converted to the
visible and human-perceptible formats. The description of the virtual world contains
all the information necessary to generate an image, such as the shapes representing
the surface geometries, the material properties of the scene surfaces, the emission
properties of the light sources, or the sensor information describing how we capture
the virtual world through a virtual camera.

Persistent sophistication in research and development in rendering makes it pos-
sible to arise an paradigm called the photo-realistic rendering. Photo-realistic ren-
dering is a sub-field in rendering that aims to achieve the images as similar as the real
world like a real photograph. A major approach for photo-realistic rendering is to
simulate real-world phenomena as accurate as possible based on the laws of physics.
As a natural consequence, this resemblance is only truly possible by a deep under-
standing on the underlying physical effects how the real-world phenomena happens
and perceived by human. On the other hand, from the practical perspective, it is also
important to properly model the physical effects into the feasible manner suited to
the computation. Apparently, it is not an easy task and this is why the photo-realistic
rendering attracts major attention and has been a strong motivator of the research
field over the last decades.

Achieving photo-realistic rendering via physically based approaches by simulat-
ing the propagation of lights in the virtual world is called light transport simulation.

1



In the context of rendering research, light transport simulation is initially formalized
as rendering equation by Kajiya [58] and further sophisticated by Veach [112]. The
equation is written as form of an integral equation, describing the change of incom-
ing light energy by the scattering on the surfaces. Common solution for the problem
is to use numerical integration techniques using random sampling such as Monte
Carlo method or Markov chain Monte Carlo method. Utilizing random sampling
based numerical integration techniques is beneficial for the light transport simula-
tion, because it can achieve the predictable output, the stable and discretization-free
algorithms agnostic to surface topologies, or the better convergence properties espe-
cially in the high dimensional integration, which is often the case in light transport
simulation.

1.1.2 Challenges

In this thesis, we focus on light transport simulation based on the numerical integra-
tion with random sampling. The complexity of light transport simulation, however,
creates the remaining issues that has not been solved despite of the rigorous en-
deavor. A notable example includes the rendering of the scene containing complex
scene geometry or the materials that can introduce tricky light transport such as the
intereflection between glossy materials.

We focus on the challenges of light transport simulation in the two research di-
rections: (1) improving efficiency in simulation, (2) improving accuracy in modeling.
The simulation in light transport simulation concerns how we efficiently solve light
transport simulation as an integral equation. This direction of the research includes
for instance developing new statistical methods, acceleration structures, or render-
ing algorithms. On the other hand, the modeling in light transport simulation fo-
cuses on how we accurately develop an physical models of materials, light sources,
sensors, or even the mechanism of light transport itself. This direction includes for
instance the development of the new materials, the theory of light transport mainly
by means of the knowledge of physics.

1.2 Contribution

1.2.1 Bridging Representative Spaces

In the highest abstraction, the fundamental idea of the approaches introduced in
this thesis is to resolve the problems related to light transport simulation by means
of bridging representative spaces inherent to the problem formulation.

In this thesis, we define the representative spaces as a set of spaces describing the
fundamental objects representing a concept used in the problem definitions, which is

2



Bridging
strategy spaces
(Chapter 5)

Bridging
state spaces
(Chapter 6)

Bridging
chromatic spaces

(Chapter 7)

Challenge Efficiency in simulation Efficiency in simulation Accuracy in modeling

Problem MC rendering MCMC rendering Spectral reflectance
reconstruction

Bridge
Combining

rendering techniques
Combining

mutation strategies

Connecting
representations of
measured spectra

Approach Machine learning Inverse mapping Data compression

Table 1.1: Overview of the methods introduced in the thesis. The three methods
are summarized by four elements, the target challenge in simulation or modeling
(Challenge), the target problem domain (Problem), the concrete description of the
bridging spaces (Bridge), and the approach to achieve the method (Approach).

often naturally arises from the formulation of the problem definitions. The represen-
tative spaces is typically described as a form of the formulation using the language
of mathematics, or as a form of the technical concepts. For instance, the tristimulus
color spaces, a set of spaces representing a color with three components, such as
RGB or XYZ color spaces, is a representative spaces because the color space as its
component is used to represent the same concept — the color perceptible to human.

Given the definition, bridging representative spaces means to solve an interest
problem facilitating the relationship among the spaces as a component of the rep-
resentative spaces. Recalling the color space example, we can convert tristimulus
colors between two color spaces by a matrix multiplication. If a problem of interest
facilitates an another color space different from the space of the input, we can say
the solution is obtained by bridging the representative spaces.

1.2.2 Problem Definition And Representative Spaces

Among the challenges categorized in Sec. 1.1.2, we focus on the two concrete prob-
lems corresponding to each of the categories: (1) improving the efficiency in (Markov
chain) Monte Carlo rendering, and (2) improving the accuracy in the spectral re-
flectance reconstruction. Given the problem definition, we consider the three repre-
sentative spaces inherent to the specific problems: strategy spaces, state spaces, and
chromatic spaces. The summary of the spaces and the corresponding methods are
summarized in Tab. 1.1.

3



1.2.3 Original Contribution

Bridging Strategy Spaces of Light Transport Simulations The first method
bridges strategy spaces of light transport simulations which determine the solution
space of the Monte Carlo rendering algorithms. In light transport simulation, be-
cause we solve the same governing equations for light transport, different algorithms
all converge to the same result. However, since different algorithms have different
efficiencies depending on input scene configurations, a user would try to find the
most efficient algorithm based on trials and errors. This selection of an algorithm
can be cumbersome because a user needs to know technical details of each algo-
rithm. We propose a framework which blends the results of two different rendering
algorithms, such that a blending weight per pixel becomes automatically larger for a
more efficient algorithm. Our framework utilizes a popular machine learning tech-
nique, regression forests, for analyzing statistics of outputs of rendering algorithms
and then generating an appropriate blending weight for each pixel. The key idea
is to determine blending weights based on classification of path types. This idea
is inspired by the same common practice in movie industries; an artist composites
multiple rendered images where each image contains only a part of light transport
paths (e.g., caustics) rendered by a specific algorithm. Since our framework treats
each algorithm as a black-box, we can easily combine very different rendering algo-
rithms as long as they eventually generate the same results based on light transport
simulation. The blended results with our algorithm are almost always more accurate
than taking the average, and no worse than the results with an inefficient algorithm
alone.

Bridging State Spaces of Markov Chain Monte Carlo Rendering The second
method bridges state spaces of Markov chain Monte Carlo (MCMC) rendering. Ren-
dering algorithms using Markov chain Monte Carlo (MCMC) currently build upon
two different state spaces. One of them is the path space, where the algorithms op-
erate on the vertices of actual transport paths. The other state space is the primary
sample space, where the algorithms operate on sequences of numbers used for gen-
erating transport paths. While the two state spaces are related by the sampling pro-
cedure of transport paths, all existing MCMC rendering algorithms are designed to
work within only one of the state spaces. We propose a first framework which pro-
vides a comprehensive connection between the path space and the primary sample
space. Using this framework, we can use mutation strategies designed for one space
with mutation strategies in the respective other space. As a practical example, we
take a combination of manifold exploration and multiplexed Metropolis light trans-
port using our framework. Our results show that the simultaneous use of the two
state spaces improves the robustness of MCMC rendering. By combining efficient

4



local exploration in the path space with global jumps in primary sample space, our
method achieves more uniform convergence as compared to using only one space.

Bridging Chromatic Spaces For Spectral Reflectance Reconstruction The
third method bridges chromatic spaces which determines the representation of spec-
tra to improve the accuracy in the spectral reflectance reconstruction. Physically
based rendering systems often support spectral rendering to simulate light transport
in the real world. Material representations in such simulations need to be defined
as spectral distributions. Since commonly available material data are in tristimulus
colors, we ideally would like to obtain spectral distributions from tristimulus col-
ors as an input to spectral rendering systems. Reproduction of spectral distributions
given tristimulus colors, however, has been considered an ill-posed problem since
single tristimulus color corresponds to a set of different spectra due to metamerism.
We show how to resolve this problem using a data-driven approach based on mea-
sured spectra and propose a practical algorithm that can faithfully reproduce a cor-
responding spectrum only from the given tristimulus color. The key observation in
color science is that a natural measured spectrum is usually well approximated by
a weighted sum of a few basis functions. We show how to reformulate conversion
of tristimulus colors to spectra via principal component analysis. To improve ac-
curacy of conversion, we propose a greedy clustering algorithm which minimizes
reconstruction error. Using precomputation, the runtime computation is just a sin-
gle matrix multiplication with an input tristimulus color. Numerical experiments
show that our method well reproduces the reference measured spectra using only
the tristimulus colors as input.

1.3 Thesis Organization

The thesis is divided into seven chapters. The rest of six chapters are organized as
follows. In Chapter 2, we present the basic concept of the light transport, introduc-
ing the mathematical model for light transport simulation. Chapter 3 introduces the
general overview of Monte Carlo integration. Chapter 4 presents the numerical so-
lution of light transport simulation, especially the overview of the light transport
algorithms based on path sampling. In Chapter 5, 6, and 7, we present the proposed
methods as described in Sec. 1.2.3. Finally, Chapter 8 concludes the thesis with some
possible idea for the future work.
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Chapter 2

Theory of Light Transport

2.1 Introduction

In the computer graphics field, rendering or image synthesis is a process of computa-
tion generating an image, a two-dimensional data structure typically composed of a
set of pixels, given a scene as an input. The scene is a data structure describing the ar-
tificial environment of the three-dimensional world, which is typically composed of
an representation of the geometry, the description of the appearance of the objects,
and the information of light or camera. Specifically, the photo-realistic rendering fo-
cus on generating the images as similar to the depiction of the real world as possible.
In order to achieve the photo-realism, the apparent approach is the physically-based
approach, where we focus on the raw of physics to simulate the reality. The cur-
rent development of the photo-realistic rendering is based on the physically-based
approach. The phenomena in the world can be described by the raws of physics,
including the phenomena on the light, which is undoubtedly the most important
physical entity for the physically-based rendering. Based on the context, the term
of light transport coincides with the physical aspect of the transportation of light,
which is emitted from the light source, propagated on the three-dimensional space
by interacting the object surfaces, and measured by the human eyes or the sensor of
the camera. The algorithms for generating photo-realistic images by simulating the
transportation of light is called the light transport simulation. The real-world appli-
cations of the light transport simulation is vast, which includes movie production,
game production, or the visualization related to the architecture or the engineering.
In this chapter, we will introduce the basic concepts of the light transport especially
the knowledge on how we physically model the light transport in mathematics.

2.2 Domains And Measures

Theory of light transport is written as a form of integral with respect to various
domains and the corresponding measures. Also, the physical quantities used in the
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Figure 2.1: Spherical coordinates (left) and the relationship between the differential
solid angle 𝑑𝜎 and the differential area on the spherical coordinates 𝑑𝜃𝑑𝜙 (right).
Geometrically, the differential solid angle can be represented by a product of the
differential lengths of the two edges defined by the arc lengths on the spherical co-
ordinates fixing one coordinate: sin 𝜃 𝑑𝜙 and 𝑑𝜃 .

light transport simulation are defined with various measures. In this section, before
diving into the actual explanation of the light transport theory, we will introduce
common domains andmeasureswhich are often used in the context of light transport
simulation, as well as the relationship between these domains and measures.

We first define the scene surface  ⊂ ℝ3 as an union of all the surfaces of the
objects. We represent a point on the surface as bold letters like 𝐱 ∈ . We can
define the measure with respect to the area of the scene surface , called the area
measure 𝑑𝐴. Using the measure, we can define the integral over the scene surface
 defined for instance as ∫ 𝑓 (𝐱)𝑑𝐴(𝐱), which is often seen in the integral used in
the light transport simulation. We note that, in the context of the light transport
simulation, the scene surface  is not necessarily a differentiable manifold. For
instance, we can easily assume the scene containing two spheres contacting one
point, which is known to be non-manifold. Practically, we can ignore these pathetic
parts of the geometries because the integral over the null measure (in this case, the
parts like area measure is zero, like contacting points or lines) becomes zero. Still the
contacting planes are a problem, but at least we can select one of the object surface
contacting each other to make the entire scene surface measurable for almost every
set except for the null measures [112]. In the context of differential geometry, the
surface integral on manifold can be defined as an integral of the differential 2-form.
Using this kind of definitions, more rigorous handling of the integral is possible [68],
however, we will stay in the definition of the surface integral with a naive measure
theoretic definition of the area measure.

In addition to the integral with respect to the area, we often use the integral with
respect to the directions. The directions are represented by a normalized vector 𝜔 on
the unit sphere 2. As a measure on the domain, we define the solid angle measure

7



𝑥

𝑦

𝑧

𝑑𝜎

𝑥

𝑦

𝑧

𝑑𝜎⊥

𝑑𝜎

𝑑𝐴⊥𝑟

Figure 2.2: Projected solid angle (left) and the relationship between the differential
area 𝑑𝐴⊥ and the differential solid angle 𝑑𝜎 (right). The relationship can be described
by projecting 𝑑𝐴 onto the unit sphere. Two differential elements are related by mul-
tiplying the inverse square distance from the center of the unit sphere 1/𝑟2, which
intuitively means the change in the proportion in the distance 1/𝑟 is squared when
we consider the proportion in the area.

𝑑𝜎 which measures the area on the sphere 2. This implies we can consider the
solid angle measure as an area measure defined on the unit sphere. The directions
can be also represented by the spherical coordinates (𝜃, 𝜙) where 𝜃 is the azimuthal
angle and 𝜙 is the zenith angle (Fig. 2.1, left). The relationship between the solid
angle measure 𝑑𝜎 and the differential area on the spherical coordinate 𝑑𝜃𝑑𝜙 can
be written by multiplying the differential arc lengths around the direction (Fig. 2.1,
right). Therefore, we obtain

𝑑𝜎 = sin 𝜃 𝑑𝜃𝑑𝜙. (2.1)

Moreover, we can consider the area or solid angle measure projected on the dif-
ferent surface. This kind of measures are useful in the light transport simulation
because the light illuminates from the perpendicular direction to the surface. The
projected solid angle measure 𝑑𝜎⊥ is defined as the measure on the projected area of
the solid angle onto the tangent plane (Fig. 2.2, left). The relationship between the
solid angle measure 𝑑𝜎 and the projected solid angle measure 𝑑𝜎⊥ can be written as

𝑑𝜎⊥ = | cos 𝜃 | 𝑑𝜎, (2.2)

where 𝜃 is the angle between the direction𝜔 and the surface normal 𝐧. Alternatively,
we can project the differential area 𝑑𝐴 to the plane perpendicular to the direction 𝜔.
The projected area measure 𝑑𝐴⊥ is defined in this way as

𝑑𝐴⊥ = | cos 𝜃 | 𝑑𝐴, (2.3)
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with the same angle 𝜃 as in Eq. 2.2. From these equations, therefore we can obtain
the identity on the two product measures:

𝑑𝐴⊥𝑑𝜎 = | cos 𝜃 | 𝑑𝐴𝑑𝜎 = 𝑑𝐴𝑑𝜎⊥. (2.4)

The area measure and the solid angle measure is related by considering the pro-
jection of the differential area perpendicular to direction to the surface on the unit
sphere (Fig. 2.2, right). Therefore, the solid angle measure 𝑑𝜎 can be written as

𝑑𝜎 =
𝑑𝐴⊥

𝑟2
=
| cos 𝜃 ′|

𝑟2
𝑑𝐴 (2.5)

where 𝑟 is the distance between the center of the sphere to the surface and 𝜃 ′ is the
angle between the surface normal on the point at the area measure of an interest.
We note that the angle 𝜃 ′ is different from the angle 𝜃 because 𝜃 ′ is the angle defined
for the surface normal around the other differential area projected to the differential
solid angle. From this equation, we can also obtain the relationship between the area
measure and the projected solid angle measure:

𝑑𝜎⊥ = | cos 𝜃 | 𝑑𝜎 =
| cos 𝜃 || cos 𝜃 ′|

𝑟2
𝑑𝐴, (2.6)

which we will later used as a definition of the geometry factor.

2.3 Radiometry

Radiometry is a study field of the measurement of the electromagnetic radiation.
In the light transport simulation, we are interested in the behavior of the visible
light, which is also a kind of the electromagnetic radiation. Radiometry is based
on the geometric optics, where we consider the light as a movement of the rigid
particles. This means some of the physical phenomena related to the wave property
of the light, such as diffraction or interferences, where the field of the wave optics
handles, cannot be captured in the formulation based on the radiometry. Recent
development of the light transport theory [68] shows rigid relationship between the
formulation of the light transport and the electromagnetic theory and derived the
complete formulation starting from the Maxwell equation. In this thesis, however,
we will merely introduce the classical handling of the light transport based on the
radiometry.

Specifically, the field of studies on the measurement of visible electromagnetic
radiation in terms of the human perception. The radiometric quantities have corre-
sponding equivalent in the photometry, like the luminance to the radiance. Although
the most of interests on light transport simulation is in the visible wavelength, we
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Figure 2.3: Radiance along with the direction 𝜔 from the position 𝐱 is defined as an
amount of light energy traveling through within the tube defined by the projected
differential area 𝑑𝐴⊥ perpendicular to 𝜔 and the differential solid angle 𝑑𝜔.

will stick to the use of radiometric terms in the following discussions.

Radiance Now we will introduce the basic quantities utilized to describe the light
transport theory. Especially we will focus on the radiance, a basic quantity used to
describe the light transport. The radiance is a fundamental quantity in light trans-
port simulation because the sensors such as human eyes or a camera are sensitive
to the radiance. The radiometric quantities are defined as derivatives of the elec-
tromagnetic energy 𝑄, including the radiance. Given a point 𝐱 and a direction 𝜔,
the radiance 𝐿(𝐱, 𝜔) is a five-dimensional function defined as the amount of energy
passed through a projected differential area 𝑑𝐴⊥ on a hypothetical plane (cross sec-
tion) perpendicular to the differential solid angle 𝑑𝜔 in the unit time (Fig. 2.3). Using
derivatives, the radiance 𝐿(𝐱, 𝜔) is written as

𝐿(𝐱, 𝜔) =
𝑑𝑄

𝑑𝑡𝑑𝐴⊥𝑑𝜔
=

𝑑Φ
𝑑𝐴⊥𝑑𝜔

, (2.7)

where Φ = 𝑑𝑄/𝑑𝑡 is radiance power defined as electromagnetic energy per unit
time. If the radiance is measured on the surface point 𝐱 with a surface normal 𝐧,
the projected differential area 𝑑𝐴⊥ can be written as 𝑑𝐴⊥ = 𝑑𝐴 cos 𝜃 , where 𝜃 is the
angle between 𝜔 and 𝐧. Intuitively, the cosine term of the equation can be described
as a term to capture the increase in amount of energy on the unit surface according
to the increase of the grazing angle.

Alternatively, in order to achieve more rigid handling of the radiance, we can
define 𝑑𝐴⊥ as a differential 2-form [68]. In this formulation, the radiance becomes a
three component vectors whose element represents the flow of the flux through the
surface element perpendicular to each 𝑥, 𝑦, 𝑧 axis. In this case, the scalar variant of
the radiance is obtained as a pullback of the 2-form onto the chart on the surface.
The operation naturally introduces the cosine term in 𝑑𝐴⊥ = 𝑑𝐴 cos 𝜃 .

The radiance is known to be invariant along straight line, as long as the light
travels through a vacuum, the space without a participating media. This character-
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istic is important for rendering because we can express the radiance by a sequence
of the surface points.

Given the definition of the radiance, the other radiometric quantities can be writ-
ten as an integral of the radiance. For instance, the total flux Φ on the specific total
surface area 𝐴 and the specific total solid angle Ω can be expressed with the double
integral of the radiance:

Φ = ∫
𝐴
∫
Ω
𝐿(𝐱, 𝜔)𝑑𝜙(𝜔)𝑑𝐴(𝐱). (2.8)

We distinguish the incident and exitant radiances. The incident radiance 𝐿𝑖(𝐱, 𝜔)
measures the radiance arriving at the position 𝐱 from the direction 𝜔. On the other
hand, the exitant radiance 𝐿𝑜(𝐱, 𝜔) measures the radiance leaving from the position
𝐱 to the direction 𝜔. In a vacuum without participating media, the two quantities
are related by

𝐿𝑖(𝐱, 𝜔) = 𝐿𝑜(𝐱, −𝜔). (2.9)

We note that this separation is essential, because the radiance on the surface can be
discontinuous on the point on the surface, that is, there exists the case the for 𝐱 ∈ ,

𝐿+(𝐱, 𝜔) ≠ 𝐿−(𝐱, 𝜔), (2.10)

where 𝐿+ and 𝐿− is the radiance defined in above and below the surface. These func-
tions are written with the one-side limits respect to the surface normal 𝐧 as

𝐿+(𝐱, 𝜔) = lim
𝑡→+0

𝐿(𝐱 + 𝑡𝐧, 𝜔), (2.11)

𝐿−(𝐱, 𝜔) = lim
𝑡→−0

𝐿(𝐱 + 𝑡𝐧, 𝜔). (2.12)

Alternatively, these quantities can be also defined with the limits of time in photon
trajectories [112]. Using these one-side limits of the radiance, we can intuitively
define the incident and exitant radiances as

𝐿𝑖(𝐱, 𝜔) =
⎧⎪⎪
⎨⎪⎪⎩

𝐿+(𝐱, −𝜔), 𝜔 ⋅ 𝐧 > 0

𝐿−(𝐱, −𝜔), 𝜔 ⋅ 𝐧 < 0
(2.13)

𝐿𝑜(𝐱, 𝜔) =
⎧⎪⎪
⎨⎪⎪⎩

𝐿+(𝐱, 𝜔), 𝜔 ⋅ 𝐧 > 0

𝐿−(𝐱, 𝜔), 𝜔 ⋅ 𝐧 < 0
(2.14)

One can easily check Eq. 2.9 when 𝐱 in a point in a space, because 𝐿 is continuous
so 𝐿+ = 𝐿− holds. In the following discussions, for simplicity, we sometimes omits
the subscripts 𝑖 and 𝑜 from 𝐿𝑖 or 𝐿𝑜 and just write 𝐿 instead unless the ambiguity
concerns.
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Surface Scattering The energy of light emitted from the light source travels along
the ray of light by reflecting or transmitting on the object surfaces, where some part
of the energy of light is absorbed and dissipated as a heat. The characteristics of
describing how the energy of light reflect on the surface is called the reflectance. The
reflectance dominates the appearance of the object. For instance, let us consider an
object with red color illuminated with a light source with white color. The object
looks red because the surface of the object absorbs the energy corresponding to the
wavelengths.

In order to introduce how we define such a reflectance property in the language
of mathematics. Here we want to assume several assumptions. First, we assume the
interaction of lights with the fixed wavelength, that is, the case that the wavelength
does not change due to the interaction of light and ignores wavelength-dependent
effects such as fluorescence. Second, we assume the the interaction happens only
on the single point on the surface, that is, the interaction of light is only happens in
terms of the single point on the surface. This means we ignore the volumetric effect
on the subsurface, where the interaction involves in multiple points on the surface
and we consider the energy of light is transmitted through under the surface. This
kind of surface interaction is called the subsurface scattering.

Given these assumptions, the reflectance can be describe as the bidirectional re-
flectance distribution function (BRDF), a function with respect to a surface point 𝐱,
the incident direction 𝜔𝑖 and the outgoing direction 𝜔𝑜 (Fig. 2.4), is defined as

𝑓𝑟 (𝐱, 𝜔𝑖 , 𝜔𝑜) =
𝑑𝐿𝑜(𝐱, 𝜔𝑜)
𝐿𝑖(𝐱, 𝜔𝑖)𝑑𝜔⊥

𝑜
=

𝑑𝐿𝑜(𝐱, 𝜔𝑜)
𝐿𝑖(𝐱, 𝜔𝑖) cos 𝜃𝑑𝜔 𝑜

. (2.15)

In the case that the light is transmitted into the surface, that is, when 𝜔𝑖 and 𝜔𝑝 are
in the opposite side of the surface, the reflectance function is called the bidirectional
transmittance distribution function (BTDF) 𝑓𝑡 . We call the function combining BRDF
and BTDF as the bidirectional scattering distribution function (BSDF) 𝑓𝑠 . In the defi-
nition of BSDF, the cosine term in Eq. 2.15 is substituted by | cos 𝜃 | in order to support
the two cases in one equation.

Spectral Quantities More fundamentally, the aforementioned quantities can also
be definedwith respect to wavelengths. For instance, spectral radiance can be defined
as

𝐿𝜆(𝐱, 𝜔, 𝜆) =
𝑑Φ

𝑑𝐴⊥𝑑𝜔𝑑𝜆
=
𝑑𝐿(𝐱, 𝜔)

𝑑𝜆
, (2.16)

The other radiometric quantities can be similarly extended to the spectral quantities.
Specifically, spectral radiance is the fundamental quantity in radiometry because
the other quantities can be derived from the integration of spectral radiance. The
spectral quantities are important for spectral rendering, the light transport simulation
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Figure 2.4: Bidirectional scattering distribution function (BSDF) is four-dimensional
function defined with respect to the incoming and outgoing directions 𝜔𝑖 and 𝜔𝑜 .
Specifically, the function is called BRDF if 𝜔𝑖 and 𝜔𝑜 are in the same side with respect
to the surface normal 𝐱 (a,b). On the other hand, if 𝜔𝑖 and 𝜔𝑜 are in the opposite side
with respect to 𝐧, the function is called BTDF (c,d).

modelded with the full wavelength instead of using tristimulus color spaces like RGB
color space.

2.4 Colors

In this section we will briefly introduce the concept in color science related to light
transport simulation. It is important to consider proper handling of colors in ren-
dering system, because the final output of light trnsport simulation is a color image.

SpectralRepresentation Fundamentally, physical representation of colors is orig-
inated from the spectral quantities defined as a function of wavelengths. The domain
of wavelength or the function mapped from that domain is called the spectrum, by
context representing the wavelength-dependent radiometric quantities such as spec-
tral radiance, spectral reflectance, and so on. If the wavelengths are in the visible
range that humans can perceive, the spectrum is called the visible spectrum. The
visible wavelengths are around 380 to 730 nm.

Human Perception of Color Human can perceive the incoming light as color by
different types of cells in retina. Retina is an inner part of the eye that is composed
of the light-sensitive photoreceptor cells. It is known that there are several different
types of photoreceptor cells in retina such as cone cells or rod cells.

Cone cells perceive the light with relatively high brightness and are mainly re-
sponsible for the color perception of the human eye. Cone cells are furthers catego-
rized into three types according to the spectrum that the cells can perceive: S-cones,
M-cones, and L-cones and each cone is responsible for the ranges of short, midium,
and long wavelengths respectively. It is also known that the cone cells have faster
responce time than the other photoreceptor cells, which enables us to perceive the
rapid change of the scene, especially in bright places. The existence of three different
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cones explains why the human vision is said to be trichromatic.
On the other hand, rod cells are more sensitive than the cone cells and perceive

the light with relatively low intensity. Therefore rod cells are mainly responsible for
night vision. Unlike cone cells, rod cells is composed of only type of photoreceptor
cells so they do little contribution to the color vision. This explains why we find it
hard to distinguish colors at the dark places.

TristimulusColor Spaces Aswe explained, human vision system is trichromatic.
Therefore we can characterize the human perception of colors with three values, in
order to model the color that human can perceive. These three values are called the
tristimulus values and the tristimulus color space defines the representation of color
by tristimulus values. Here we will describe the relashionship between the spectrum
and various representations of the colors with tristimulus values.

CIE XYZ color space is the standard tristimulus color space that links between
the visible spectrum and the human-perceived colors. The color space is created and
standardized by International Commission on Illumination (CIE) [102] based on the
series of experiments independently conducted by Wright and Guild [123, 31]. The
data obtained with the experiments by Wright and Guild are initially used to specify
an another color space (CIE RGB color space) and based on that color space CIE XYZ
color space is derived.

The participants of the experiments are asked tomatch the test colors with amix-
ture of three three monochromatic primary colors representing red (700 nm), green
(546.1 nm), and blue (435.8 nm). By using the monochromatic colors represented by
a single wavelength as test colors, we can obtain three spectra of the coefficients
required to match the test colors for each wavelength. This is possible under the as-
sumption of the principal known as Grassman’s law, which empirically explains any
colors can be composed of a linear superposition of the monochromatic colors. The
three spectra obtained in this way is called the color matching functions. By collect-
ing the measurements we can define the virtual observer who has an averaged color
matching function, known as standard observer. Given the color matching functions
𝑟(𝜆), �̄�(𝜆), and �̄�(𝜆) corresponding to the primary colors, the RGB tristimulus values
for the spectrum 𝑆(𝜆) can be obtained as

𝑅 = ∫
Λ
𝑆(𝜆)𝑟(𝜆)𝑑𝜆, 𝐺 = ∫

Λ
𝑆(𝜆)�̄�(𝜆)𝑑𝜆, 𝐵 = ∫

Λ
𝑆(𝜆)�̄�(𝜆)𝑑𝜆, (2.17)

where Λ is a range of the visible wavelengths. We note that the integral represents
a general form of Grassman’s law, considering a Riemann sum of the integral. We
also note that the color matching functions are normalized to exclude the effect of
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brightness of the primaries:

∫
Λ
𝑟(𝜆)𝑑𝜆 = ∫

Λ
�̄�(𝜆)𝑑𝜆 = ∫

Λ
�̄�(𝜆)𝑑𝜆 = ∫

Λ
𝑉 (𝜆)𝑑𝜆, (2.18)

where 𝑉 (𝜆) is the luminosity function. CIE also scandalized human perception to the
brightness as a luminosity function 𝑉 (𝜆), which approximates the human response
to the brightness. The function is used to convert the radiance energy to luminous
energy: 𝑉 = ∫𝜆 𝑆(𝜆)𝑉 (𝜆)𝑑𝜆. The conversion from the RGB tristimulus values to the
luminance is derived with a least square fit of the mixed primaries. Note that this
derivation assumes the assumption that the human perception is roughly linear to
the human response. The coefficients can be written as

(𝑎′, 𝑏′, 𝑐′) = argmin
𝑎,𝑏,𝑐

∫
Λ
(𝑎𝑟(𝜆) + 𝑏�̄�(𝜆) + 𝑐�̄�(𝜆) − 𝑉 (𝜆))

2 𝑑𝜆. (2.19)

According to the CIE standard, these values are (𝑎′, 𝑏′, 𝑐′) = (0.17697, 0.81240, 0.01063).
Using these coefficients, the luminance 𝑉 can be approximated by the RGB tristim-
ulus values as 𝑉 ≈ ∫Λ 𝑆(𝜆) (𝑎

′𝑟(𝜆) + 𝑏′�̄�(𝜆) + 𝑐′�̄�(𝜆)) 𝑑𝜆 = 𝑎′𝑅 + 𝑏′𝐺 + 𝑐′𝐵.
Based on aforementioned CIE RGB color space, CIE XYZ color space is carefully

designed to have good characteristics as a standard tristimulus color space, mainly
to reduce the computational burden for the users. The space is induced by a new
set of color matching functions 𝑥(𝜆), �̄�(𝜆), and 𝑧(𝜆). The characteristics of the space
are as follows. (1) The color matching functions are non-negative. This property
fixed the problem that the color matching functions of CIE RGB color space include
negative parts and the resulting components of the tristimulus values can include
the negative values. (2) The color matching function �̄�(𝜆) is exactly equal to the
luminocity function 𝑉 (𝜆). (3) The tristimulus values are selected to have coordinates
with equal values for the constant energy spectrum. The constant energy spectrum
defines a flat spectrum that has the same values at any wavelengths. This means
the white point, the tristimulus values that defines the white color, for the constant
energy spectrum has a coordinates (𝑋, 𝑌 , 𝑍 ) with 𝑋 = 𝑌 = 𝑍 . (4) The all possible
colors in the space (gamut) are included in the triangle of (1, 0), (0, 0), and (0, 1) in the
chromaticity diagram. Along with the CIE XYZ color space, CIE xyY color space is
introduced to separate the chromatic and brightness components in the tristimulus
values. The chromaticity diagram is defined as a projection of the space into the xy
plane. For a brightness term, we can use 𝑌 terms according to the property (2). For
a chromatic terms, the space introduces the normalized values of 𝑋𝑌𝑍 and use two
of them as coodinates, because the rest can be obtained with subtracting the sum of

15



the two from one. The normalized values are defined as

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
, 𝑦 =

𝑌
𝑋 + 𝑌 + 𝑍

, 𝑧 = 1 − 𝑥 − 𝑦. (2.20)

The detailed derivation of the CIE XYZ color space given the conditions that satisfies
these properties can be found in the literature [24].

sRGB Color Space Various other tristimulus color spaces can be derived from
CIE XYZ color space. For instance, we can derive notable sRGB color space [105]
through a series of transformations from XYZ tristimulus values. First we consider
the transformation between XYZ and linear sRGB color space. The transformation of
linear sRGB shares the same specification as ITU-R BT.709 standard [111]. According
to the standard, the chromaticity coordinates of the three primaries corresponding
to red (R), green (G), and blue (B) are respectively defined as

[
𝑥𝑅
𝑦𝑅]

=
[
0.640
0.330]

,
[
𝑥𝐺
𝑦𝐺]

=
[
0.300
0.600]

,
[
𝑥𝐵
𝑦𝐵]

=
[
0.150
0.060]

. (2.21)

The standard assumes the D65 illuminant to define the white color. The chromaticity
coodinates that all components of the RGB values are equal to unity (while point)
under the D65 illuminant is also defined as

[
𝑥𝑊
𝑦𝑊 ]

=
[
0.3127
0.3290]

. (2.22)

The luminance is defined as 𝑉 = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵. Therefore the 𝑌
coordinates for each primary can be written as 𝑌𝑅 = 0.2126, 𝑌𝐺 = 0.7152, and 𝑌𝐵 =
0.0722. We assume the luminance of the while point is 𝑌𝑊 = 1. According to Eq. 2.20,
the 𝑋𝑌𝑍 coordinates for each primary and while point can be calculate as 𝑋 = 𝑥𝑌 /𝑦,
𝑍 = (1 − 𝑥 − 𝑦)𝑌 /𝑦 and 𝑌 remains the same between two spaces. Using these values,
the conversion from 𝑅𝐺𝐵 to 𝑋𝑌𝑍 coordinates can be written as

⎡
⎢
⎢
⎢
⎣

𝑋
𝑌
𝑍

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑋𝑅 𝑋𝐺 𝑋𝐵

𝑌𝑅 𝑌𝐺 𝑌𝐵

𝑍𝑅 𝑍𝐺 𝑍𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛼𝑅 0 0
0 𝛼𝐺 0
0 0 𝛼𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑅
𝐺
𝐵

⎤
⎥
⎥
⎥
⎦

, (2.23)

where the coefficients 𝛼𝑖 control the scaling of the each basis and determines the
factor contributes to brightness of each primary. Note that this scaling operation
does not alter the chromacity of the colors. Substituting [𝑅 𝐺 𝐵]𝑇 = [1 1 1]𝑇 and
[𝑋 𝑌 𝑍 ]𝑇 = [𝑋𝑊 𝑌𝑊 𝑍𝑊 ]𝑇 , we obtain the coefficients 𝛼𝑖 by solving the linear equa-
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tion:
⎡
⎢
⎢
⎢
⎣

𝛼𝑅
𝛼𝐺
𝛼𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑋𝑅 𝑋𝐺 𝑋𝐵

𝑌𝑅 𝑌𝐺 𝑌𝐵

𝑍𝑅 𝑍𝐺 𝑍𝐵

⎤
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎣

𝑋𝑊

𝑌𝑊

𝑍𝑊

⎤
⎥
⎥
⎥
⎦

. (2.24)

Substituting the coefficients 𝛼𝑖 in Eq. 2.23 for Eq. 2.24, we finally obtain the conver-
sion matrix from linear sRGB to CIE XYZ color space. The inverse conversion from
XYZ to sRGB can be obtained by calculating inverse of the matrix.

It is known that human perceives the intensity of light by the distribution similar
to power function (Stevens’s power law). Facilitating this nature, the display device
are designed to maximize the visual quality by reducing the required bandwidth of
the input signal using the compressed information instead of the original information.
This process of encoding or decoding the tristimulus values are called the gamma
correction. The sRGB color space explicitly defines the average gamma value of 2.2.
Therefore the aforementioned linear sRGB colors need to be converted according to
the average gamma, to obtain the final colors in the sRGB color space. The function
to encode the linear RGB colors are called the transfer function, which is defined in
sRGB color space as

𝐶sRGB =
⎧⎪⎪
⎨⎪⎪⎩

12.92𝐶linear 𝐶linear ≤ 0.0031308

1.055𝐶1/2.4
linear − 0.055 otherwise,

(2.25)

where 𝐶linear is a component of the linear sRGB colors and 𝐶sRGB is the correspond-
ing output. We note that the transformation is designed to approximate the gamma
compression with gamma 2.2 with a piecewise-defined functions. This explains why
the transformation uses the exponents of 2.4 instead of 2.2. The linear parts are in-
troduced to prevent the numerical problems that power function can have extremely
large slope when 𝐶linear is near zero.

2.5 Rendering Equation

The rendering equation describes the equilibrium distribution of the energy of light,
describing how a distribution of the scattered light changes according to the surface
property. The equation is originally introduced to the compute graphics field by
Kajiya [58], which has now became as a fundamental equation in light transport
simulation and every light transport simulation algorithm solves the equation to
obtain the image. Continuing to the definition of BSDF, we assume the light travels
in a space with no participating media, thus involves in no scattering in the free
space. The equation for volume scattering originated from the radiative transfer
equation [13] is also famous in light transport simulation, yet in this thesis we will
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focus on merely the surface scattering.
The rendering equation formulates the outgoing radiance 𝐿𝑜(𝐱, 𝜔𝑜) at the surface

point 𝐱 to the direction 𝜔𝑜 . Considering the conservation of energy of total incident
and outgoing radiance, the outgoing radiance can be written as a sum of the emitted
radiance 𝐿𝑒(𝐱, 𝜔𝑜) and the scattered radiance 𝐿𝑠(𝐱, 𝜔𝑜):

𝐿𝑜(𝐱, 𝜔) = 𝐿𝑒(𝐱, 𝜔𝑜) + 𝐿𝑠(𝐱, 𝜔𝑜). (2.26)

The scattered radiance can be obtained from the definition of BSDF by the integration
over the sphere of the incident direction around 𝐱:

𝐿𝑠(𝐱, 𝜔𝑜) = ∫2
𝑓𝑠(𝐱, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖(𝐱, 𝜔𝑖)𝑑𝜎⊥(𝜔𝑖), (2.27)

where 2 is a unit sphere representing a set of directions around the point 𝐱, and
𝑑𝜎⊥ is the projected solid angle measure. This form of the equation is also called the
scattering equation. Substituting 𝐿𝑠 in Eq. 2.28, we obtain the light transport equation:

𝐿𝑜(𝐱, 𝜔𝑜) = 𝐿𝑒(𝐱, 𝜔𝑜) + ∫2
𝑓𝑠(𝐱, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖(𝐱, 𝜔𝑖)𝑑𝜎⊥(𝜔𝑖). (2.28)

Recursive Formulation Here we want to convert the rendering equation in the
recursive form according to the outgoing radiance 𝐿𝑜(𝐱, 𝜔𝑜). Under the assumption
that the light travels in the vacuum, the incoming radiance can be represented by a
function of the position 𝐱 and the outgoing direction 𝜔𝑜 using the outgoing radiance:

𝐿𝑖(𝐱, 𝜔) = 𝐿𝑜(𝜒(𝐱, 𝜔), −𝜔). (2.29)

Here 𝜒(𝐱, 𝜔) is the ray-casting function that returns the closed surface along the
direction 𝜔 originated from the position 𝐱, that is, along the ray (𝐱, 𝜔). Specifically
the function is defined as

𝜒(𝐱, 𝜔) = 𝐱 + inf{𝑑 > 0 ∣ 𝐱 + 𝑑𝜔 ∈ }
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑(𝐱,𝜔)

⋅𝜔, (2.30)

where  is a set of scene surfaces and 𝑑(𝐱, 𝜔) means the distance to the next
surface. For convenience, we append the singleton {∞} to the set applied by inf in
𝑑. If there is no intersecting surfaces, the set becomes ∅ therefore 𝜒(𝐱, 𝜔) returns
∞ because inf ∅ = ∞. Substituting Eq. 2.29 for Eq. 2.28, we obtain the recursive form
of the rendering equation:

𝐿𝑜(𝐱, 𝜔𝑜) = 𝐿𝑒(𝐱, 𝜔𝑜) + ∫2
𝑓𝑠(𝐱, 𝜔𝑖 , 𝜔𝑜)𝐿𝑜(𝜒(𝐱, 𝜔𝑖), −𝜔𝑖)𝑑𝜎⊥(𝜔𝑖). (2.31)
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Area Formulation The rendering equation in Eq. 2.31 is formulated as an integral
with respect to the project solid angle measure. By means of changing the measure,
we can obtain the alternative form of the equation to consider the integral over the
scene surfaces, instead of a set of directions on the unit sphere. Sometimes this kind
of formulation is useful, for instance, when we want to consider the integral over
the area light sources.

The projected solid angle measure 𝑑𝜔⊥ can be converted to the area measure 𝑑𝐴
by the Jacobian, specifically called the geometric term 𝐺(𝐱 ↔ 𝐲) in the rendering
context:

𝐺(𝐱 ↔ 𝐲) =
||||
𝑑𝜎⊥

𝑑𝐴
||||
= 𝑉 (𝐱 ↔ 𝐲) ⋅

|𝐧𝐱 ⋅ ⃖⃖⃗𝐱𝐲||𝐧𝐲 ⋅ ⃖⃖⃗𝐲𝐱|
‖𝐱 − 𝐲‖2

, (2.32)

where 𝐲 and 𝐲 are the points on the scene surface with the surface normals 𝐧𝐱 and
𝐧𝐲 respectively. ⃖⃖⃗𝐱𝐲 is the direction from 𝐱 to 𝐲, and 𝑉 (𝐱 ↔ 𝐲) is a visibility function
defined as

𝑉 (𝐱 ↔ 𝐲) =
⎧⎪⎪
⎨⎪⎪⎩

1, if {𝑡𝐱 + (1 − 𝑡)𝐲 ∣ 𝑡 ∈ (0, 1)} ∩ = ∅

0, otherwise.
(2.33)

Intuitively, the visibility function becomes unity when the points 𝐱 and 𝐲 is mutually
visible. Also, the visibility function can be computed by the ray-casting function 𝜒:
𝑉 (𝐱 ↔ 𝐲) = 1 if and only if 𝜒(𝐱, ⃖⃖⃗𝐱𝐲) = 𝐲. Using these equations, we can rewrite
Eq. 2.31 with respect to the function of the consequent intersection points 𝐱, 𝐲, 𝐳 by
letting 𝐲 = 𝐱, 𝜔𝑜 = ⃖⃖⃗𝐲𝐳, 𝜔𝑖 = ⃖⃖⃗𝐲𝐱. This form of the rendering equation is called the
three point form of the rendering equation, which reads

𝐿(𝐲 → 𝐳) = 𝐿𝑒(𝐲 → 𝐳) + ∫ 𝑓𝑠(𝐱 → 𝐲 → 𝐳)𝐿(𝐱 → 𝐲)𝐺(𝐱 ↔ 𝐲)𝑑𝐴(𝐱). (2.34)

The equation is now described only with the points on the surfaces, instead of the
points and the directions. We introduced some notations to specify the function
depends only on the surface points like 𝑓𝑠(𝐱 → 𝐲 → 𝐳) = 𝑓𝑠(𝐲, ⃖⃖⃗𝐲𝐱, ⃖⃖⃗𝐲𝐳).

Measurement Equation The purpose of the light transport simulation is to com-
putemeasurements of the light energy that contribute to each pixel. Eq. 2.28,2.31,2.34
formulates the distribution of the radiance, yet we actually need to perform themea-
surement of the radiance on the sensor to obtain the pixel values from the radiance
distribution. We let the measurements for 𝑗-th pixels be 𝐼𝑗 (𝑗 = 0,… , 𝑀 ). We can
formulate the measurement of the radiance by the measurement equation defined as

𝐼𝑗 = ∫×2
𝑊 (𝑗)

𝑒 (𝐱, 𝜔)𝐿𝑖(𝐱, 𝜔)𝑑𝐴(𝐱)𝑑𝜎⊥
𝐱 (𝜔). (2.35)
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We assume the sensor is a part of the scene surface. 𝑊 (𝑗)
𝑒 (𝐱, 𝜔) is the sensor respon-

sibility function corresponding to the pixel 𝑗, which is also called as the importance.
We often drop the superscript (𝑗) if we don’t need to point to the specific pixels.
The function describes how a sensor changes its response according to the position
and the direction on the sensor. We note that the importance is the dual concept
as the radiance and we can even obtain the transport equation for the importance
similar to Eq. 2.28,2.31,2.34. This characteristic is a theoretical basis for the adjoint
methods [112], which means we can solve the light transport problem by solving
the transport equation for the importance, as well as by solving the equation for
radiance.

The measurement equation in Eq. 2.35 can also be expressed with respect to the
integral over the scene surfaces, applying similar procedure that the area formulation
of the light transport equation (Eq. 2.34) is obtained from the directional variant
(Eq. 2.31):

𝐼𝑗 = ∫× 𝑊 (𝑗)
𝑒 (𝐱 → 𝐲)𝐿(𝐱 → 𝐲)𝐺(𝐱 ↔ 𝐲)𝑑𝐴(𝐱)𝑑𝐴(𝐲), (2.36)

where 𝐲 ∈  is a point on the scene surface and we used the notation 𝑊 (𝑗)
𝑒 (𝐱 →

𝐲) = 𝑊 (𝑗)
𝑒 (𝐱, ⃖⃖⃗𝐱𝐲) as well as the notations in Eq. 2.34.

Path Integral Formulation Facilitating the predefined formulations, we can ob-
tain the another form of the light transport equation known as the path integral
formulation of the light transport. The purpose of the path integral formulation is to
express the light transport equations with a simple form of the integral instead of the
form of the recursively defined integral equations. In this formulation, the integral
is defined with respect to the set of light transportation paths, or simply called the
paths, which is represented by the sequence of surface points.

The main benefit of the path integral formulation is the formulation enables us
to apply the general-purpose integration methods to solve the light transport sim-
ulation. Also the formulation detaches the paths from the way of its construction.
Using this formulation, the structure of the paths are now independent from the
information how they are actually constructed, for instance, the paths are traced
from the side of the sensor or the light. This property leads to the bidirectional ap-
proaches [112], one of the fundamental approaches in the current development of
the light transport simulations.

In order to obtain the path integral formulation, starting from the measurement
equation in Eq. 2.36, we recursively expand the radiance term 𝐿(𝐱 → 𝐲) using the
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three-point form of the light transport equation (Eq. 2.34):

𝐼 = ∫2
𝐿𝑒(𝐱0 → 𝐱1)𝐺(𝐱0 ↔ 𝐱1)𝑊𝑒(𝐱0 → 𝐱1)𝑑𝐴(𝐱0)𝑑𝐴(𝐱1)

+ ∫3
𝐿𝑒(𝐱0 → 𝐱1)𝐺(𝐱0 ↔ 𝐱1)𝑓𝑠(𝐱0 → 𝐱1 → 𝐱2)

×𝐺(𝐱1 ↔ 𝐱2)𝑊𝑒(𝐱1 → 𝐱2)𝑑𝐴(𝐱0)𝑑𝐴(𝐱1)𝑑𝐴(𝐱2)+ . . .

=
∞
∑
𝑛=1

∫𝑛+1
𝑓 (𝐱0,⋯ , 𝐱𝑛)𝑑𝐴(𝐱0)⋯ 𝑑𝐴(𝐱𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝑛

.

(2.37)

Now the pixel contribution 𝐼 can be expressed by the infinite sum of the integral
𝐼𝑛, which is a contribution from the paths with the number of vertex 𝑛 + 1 or the
length 𝑛. Here we call the length of the path by the number of edges between the
vertices, not by the actual distance that the light travels. 𝑓 (𝐱0,⋯ , 𝐱𝑛) is the function
called the measurement contribution function, which is composed of the product of
the geometric terms and the BSDFs evaluated at every vertex, defined as

𝑓 (𝐱0,⋯ , 𝐱𝑛) = 𝐿𝑒(𝐱0 → 𝐱1)𝐺(𝐱0 ↔ 𝐱1)

×(
𝑛−1
∏
𝑖=1

𝑓𝑠(𝐱𝑖−2 → 𝐱𝑖−1 → 𝐱𝑖)𝐺(𝐱𝑖−1 ↔ 𝐱𝑖))𝑊𝑒(𝐱𝑛−1 → 𝐱𝑛) (2.38)

We will rewrite the pixel contribution 𝐼 with respect to the integral on the path
space. The path space is defined as a set of all possible paths with any lengths. The
path is defined as a sequence of points on the scene surface. We represent a path
containing the vertices (𝐱0,… , 𝐱𝑛) by the notation 𝑥 = 𝐱0… 𝐱𝑛. Specifically, the path
space Ω is defined as

Ω =
∞
⋃
𝑛=1

Ω𝑛, where Ω𝑛 = {𝐱0… 𝐱𝑛 ∣ 𝐱0,… , 𝐱𝑛 ∈ }. (2.39)

Ω𝑛 is a set of paths with the length 𝑛. Corresponding to the path space, we also
define the path space measure 𝜇 by the area-product measure [38]:

𝑑𝜇(𝑥) = 𝑑𝐴(𝐱0)𝑑𝐴(𝐱1)⋯ 𝑑𝐴(𝐱𝑛). (2.40)

Using these equations, we can rewrite the per-length pixel contribution 𝐼𝑛 in Eq. 2.37
to the well-known path integral form of the light transport equation as

𝐼𝑛 = ∫
Ω
𝑓 (𝑥)𝑑𝜇(𝑥). (2.41)

Nowwe canwrite the rendering equationwith a form of a simple integral. According
to the context, we sometimes drop the subscript 𝑛 when we do not need to focus on
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the specific length of the paths. In the following discussion in this thesis, we rely on
this formulation unless stated otherwise.

22



Chapter 3

Monte Carlo Integration

3.1 Introduction

In this chapter, we will introduce the general overview of Monte Carlo integration, a
mathematical tool for numerical solutions the light transport simulation. As shown
in Chapter 2, the light transport simulation can be formulated as a form of an inte-
gral. In principle, we can consider to apply various integration methods to solve the
integral. The longstanding research and development of light transport simulation
shows, however, Monte Carlo method is a current de facto standard approach and
occupies a dominant position of the current research and development of the light
transport simulation. This fact is mainly due to the possibility of handling of the
high dimensional integral, which is often the case with light transport simulation.
The deterministic integration methods are not free from the curse of dimensionality
and the computational cost grows exponentially to the number of dimensions [21].
On the other hand, the computational cost in Monte Carlo methods does not depend
on the number of dimensions. Given this context, in this chapter, we will introduce
the general overview of the Monte Carlo method including the Markov chain Monte
Carlo method. Followed by this chapter, we will introduce the solution techniques
of the light transport simulation facilitating the Monte Carlo method.

3.2 Integration With Monte Carlo Method

Monte Carlo integration is one of the numerical integration techniques using random
sampling. Current approaches in light transport simulation largely relies on Monte
Carlo integration due to its strength to the high-dimensional integrals. We suppose
the target integral that we want to estimate as

𝐼 = ∫
Ω
𝑓 (𝑥)𝑑𝜇(𝑥), (3.1)
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where 𝑓 is a real-valued function defined onΩ, and 𝜇 is somemeasure onΩ. The basic
idea of Monte Carlo integration is to estimate the integral as a problem of finding the
expected values. For instance, we consider a random variable 𝑦 = 𝑓 (𝑥)/𝑝(𝑥) where a
random variable 𝑥 is sampled from the probability distribution with the probability
density function (pdf) 𝑝(𝑥). We denote the random variable distributed over the
density function 𝑝(𝑥) as the notation 𝑥 ∼ 𝑝(𝑥). The expected value of 𝑦 = 𝑓 (𝑥)/𝑝(𝑥)
can be calculated as

𝔼𝑝[𝑦] = ∫
Ω

𝑓 (𝑥)
𝑝(𝑥)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑦

𝑝(𝑥)𝑑𝜇(𝑥) = ∫
Ω
𝑓 (𝑥)𝑑𝜇(𝑥) = 𝐼 . (3.2)

In this sense, the random variable 𝑦 is an estimate of the integral 𝐼 . However, this
estimate 𝑦 is practically useless because the variance can be large. The quality of
an estimate can be measured by calculating the variance, the quantity that indicates
how a random variable is distributed around the expected value 𝔼𝑝[𝑦]:

𝑉𝑎𝑟𝑝[𝑦] = 𝔼𝑝 [(𝑦 − 𝔼𝑝[𝑦])2] = ∫
Ω
(𝑦 − 𝔼𝑝[𝑦])2𝑝(𝑥)𝑑𝜇(𝑥). (3.3)

Practically, instead of the one-sample estimate 𝑦 , we utilize 𝑁 number of indepen-
dent random variables (𝑥1,… , 𝑥𝑛) identically distributed to the distribution 𝑝(𝑥) and
considers an empirical average of 𝑓 (𝑥𝑖)/𝑓 (𝑥𝑖) as an estimate:

𝑦𝑁 =
1
𝑁

𝑁
∑
𝑖=1

𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)

. (3.4)

We can easily verify the expected value of 𝑦𝑁 matches 𝐼 from the linearity of the
expected value because the random variable 𝑥𝑖 is mutually independent:

𝔼𝑝[𝑦𝑁 ] =
1
𝑁

𝑁
∑
𝑖=1

𝔼𝑝 [
𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)]

=
1
𝑁

𝑁
∑
𝑖=1

𝐼 = 𝐼 . (3.5)

We note that the estimate 𝑦𝑁 will converge to 𝔼𝑝[𝑦𝑁 ] = 𝐼 almost surely as 𝑁 → ∞
according to the strong law of large number (SLLN). Moreover, the convergence rate
of the estimate 𝑦𝑁 with respect to 𝑁 can be obtained from the central limit theorem
(CLT). According to the theorem,

√
𝑁 ⋅ (𝑦𝑁 − 𝐼 ) is converged in distribution to a

normal distribution (0, 𝑉𝑎𝑟𝑝[𝑦𝑁 ]).

Error and Bias We will introduce two quantities to assess the quality of an esti-
mate: the error and the bias. The error of the 𝑁 -sample estimate 𝑦𝑁 is defined as
𝑦𝑁 − 𝐼 . The bias of the estimate 𝑦𝑁 is defined as the expected value of the error:

𝐵 [𝑦𝑁 ] = 𝔼𝑝[𝑦𝑁 − 𝐼 ] (3.6)
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The estimate 𝑦𝑁 is called unbiased if 𝐵[𝑦𝑁 ] = 0 for all 𝑁 , i.e., 𝔼𝑝[𝑦𝑁 ] = 𝐼 for all
𝑁 . On the other hand, the estimate 𝑦𝑁 is called consistent if 𝑦𝑁 is converged to 𝐼 in
probability as 𝑁 → ∞, that is, for all 𝜀 > 0.

lim
𝑁→∞

𝑃𝑟 (|𝑦𝑁 − 𝐼 | > 𝜀) = 0. (3.7)

Although both properties are preferable as an estimate, we note that unbiasedness
and consistency is orthogonal concepts.

3.3 Variance Reduction

In order to increase the efficiency of the Monte Carlo integration, it is important
to reduce variance of the estimate. Here we will briefly introduce several variance
reduction techniques which is often used in the light transport simulation.

3.3.1 Sample Placement

First approach is to control the placement of the samples as uniform as possible over
the integration domain. The stratified sampling is one of such a variance reduction
techniques. The idea behind the stratified sampling is to subdivide the sample space
into several non-overlapping regions. That is, the sample space Ω is subdivided into
𝑚 disjoint sub-spaces Ω𝑖(𝑖 = 1,… , 𝑚) called stratum, and we generate the random
samples 𝑥(𝑖,𝑗) corresponding to each Ω𝑖 . Although the stratified sampling achieves
higher convergence ratio than the ordinary sampling, the strategy is not effective on
a high dimensional space because the number of stratum and the number of samples
required for each stratum grows exponentially. The Latin hypercube sampling [75]
alleviates the problem by generating samples so that only one sample is assigned for
each row and each column. The quasi-Monte Carlo (QMC) [85] generalizes the Latin
hypercube sampling and utilizes a low discrepancy sequence instead of a sequence
of random numbers for estimating an integral. A low discrepancy sequence is de-
terministically chosen so that the samples are uniformly distributed over the sample
space.

3.3.2 Importance Sampling

The importance sampling is a technique to reduce the variance by properly choosing
the probability density function 𝑝. The selection of the distribution 𝑝 has consider-
able influence on the variance of the estimate. In the light transport simulation, prop-
erly designing the sampling strategy is important because it can reduce the variance
drastically.
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The intuitive idea of the importance sampling is to design the distribution 𝑝 as
similar to the integrand 𝑓 as possible. Specifically, it is known that the optimal choice
of the distribution 𝑝∗ that minimizes the variance is written as

𝑝∗(𝑥) =
|𝑓 (𝑥)|

||∫Ω 𝑓 (𝑥)𝑑𝜇(𝑥)||
=
|𝑓 (𝑥)|
|𝑐|

. (3.8)

In this case, the variance of the estimate becomes always zero. This equation is,
however, impractical because we must know the normalization constant 𝑐 which is
the same as the target integral.

3.3.3 Multiple Importance Sampling

Multiple importance sampling (MIS) proposed by Veach [116] is an importance sam-
pling techniquewhich combinesmultiple samples from the different probability den-
sities. The technique is useful for an integrand that is difficult to sample with a single
distribution, for instance the integrand containing multiple modalities. MIS is also
useful for light transport simulation because we can combine the paths constructed
with multiple strategies. Such a combination can alleviate a trade-off between sam-
pling strategies, for instance by combining two complementary strategies that one
strategy is effective for certain lighting effect but the other strategy is effective for a
different light effect.

We assume the combined probability densities as 𝑝𝑖(𝑖 = 1,… , 𝑁 ) and the weigh-
ing function associated with the distribution 𝑝𝑖 as 𝑤𝑖 . The estimate for multiple
importance sampling called the multi-sample estimate is defined as

𝐼MIS =
𝑁
∑
𝑖=1

1
𝑁𝑖

𝑁𝑖

∑
𝑗=1

𝑤𝑖(𝑥𝑖,𝑗)
𝑓 (𝑥𝑖,𝑗)
𝑝𝑖(𝑥𝑖,𝑗)

, (3.9)

where 𝑁𝑖 is a number of samples taken from the distribution 𝑝𝑖 and 𝑥𝑖,𝑗 ∼ 𝑝𝑖 . 𝑤𝑖 is
the weighting function corresponding to the 𝑖-th strategy. Although we can assign
the arbitrary number of samples for each strategy, from the practical point of view
in the context of the light transport simulation, we often assign the number samples
per strategy 𝑁𝑖 = 1.

The estimate 𝐼MIS is unbiased if following conditions on weights are satisfied: (1)
for all 𝑥 , 𝑓 (𝑥) ≠ 0 ⟹ ∑𝑁

𝑖=1 𝑤𝑖(𝑥) = 1 and (2) for all 𝑥 , 𝑝𝑖(𝑥) = 0 ⟹ 𝑤𝑖(𝑥) =
0. These conditions implies at least one strategy must generate the sample 𝑥 with
𝑓 (𝑥) ≠ 0. This fact can be shown in the following argument: if we assume there is
no strategy can generate the sample 𝑥 , that is, 𝑝𝑖(𝑥) = 0 for all 𝑖, by the condition
(2) we get 𝑤𝑖(𝑥) = 0 and by the contraposition of the condition (1) the value of 𝑓 (𝑥)
should be zero but actually 𝑓 (𝑥) ≠ 0 from the assumption. In other words, this fact
can be stated that the support of the function 𝑓 must be included in the union of the
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support of the distribution 𝑝𝑖:

supp (𝑓 ) ⊆
𝑁
⋃
𝑖=1

supp (𝑝𝑖). (3.10)

Veach also proposed how to design the weighting function 𝑤𝑗 . The ideal goal
of designing weighting function is to select the function so that the variance of
the resulting estimate is minimum. This is generally hard problem because we can
combine arbitrary densities. Veach proposed the weighting functions called balance
heuristics defined as

𝑤𝑖(𝑥) =
𝑁𝑖𝑝𝑖(𝑥)

∑𝑁
𝑘=1 𝑁𝑘𝑝𝑘(𝑥)

. (3.11)

He also proposed the general version of the balance heuristics parametrized by 𝛽 > 2,
called as power heuristics:

𝑤𝑖(𝑥) =
𝑁𝑖𝑝𝑖(𝑥)𝛽

∑𝑁
𝑘=1 𝑁𝑘𝑝𝑘(𝑥)𝛽

. (3.12)

Especially balance heuristics is known to have a moderately good variance bound
even compared to the best estimate possible. This property is stated for any multi-
sample estimate 𝐼 as an inequality

𝑉𝑎𝑟[𝐼MIS] − 𝑉𝑎𝑟[𝐼 ] ≤ (
1

min𝑖 𝑁𝑖
−

1
∑𝑖 𝑁𝑖)

𝜇, (3.13)

where 𝜇 = 𝔼[𝐼MIS] = 𝔼[𝐼 ].

3.4 Integration With Markov Chain Monte Carlo Method

In this section we will introduce the Markov chain Monte Carlo method (MCMC),
which is an another class of numerical integration method using random samples.
Instead of using independent samples as in MC method, MCMC utilizes the corre-
lated sequence of samples. Specifically, the correlated sequence is generated sequen-
tially only based on the previous samples, which is called the Markov chain.

The use of MCMC can alleviate the challenging situation for the ordinary MC
methods that the shape of the integrand is complex. In the context of the light
transport simulation, MCMC helps to sample the difficult paths such as the paths
generated for the scene containing difficult visibilities, or path contribution due to
the material selection, which is often said to be difficult to handle with ordinary
importance sampling.

The basic idea of MCMC is to use a correlated sequence of random variables
called a Markov chain, which is a sequence of random variable whose samples de-
pend only on samples one before. Specifically, a Markov chain is defined as a se-
quence of random variables 𝑥1, 𝑥2,⋯ such that 𝑥𝑖+1 depends only on 𝑥𝑖(𝑖 = 1, 2,… ),
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that is, 𝑋𝑖+1 ∼ 𝐾 (𝑥𝑖+1|𝑥𝑖) where 𝐾 (𝑦 |𝑥) is a conditional probability density func-
tion called the transition kernel. The class of algorithms which generates stationary
Markov chain according to some distribution is called Markov chain Monte Carlo
(MCMC). A Markov chain is called stationary if there exists a distribution 𝜋 such
that

𝜋 (𝑥) = ∫
Ω
𝐾 (𝑦 → 𝑥)𝜋 (𝑦)𝑑𝜇(𝑦). (3.14)

In order to obtain a stationary Markov chain, many of MCMC algorithms utilize
a stronger condition called detailed balance condition. A transition kernel 𝐾 satisfied
the detailed balance condition if there exists a distribution 𝜋 for all 𝑥, 𝑦 ∈ Ω,

𝐾 (𝑦 |𝑥)𝜋 (𝑥) = 𝐾 (𝑥 |𝑦)𝜋 (𝑦). (3.15)

A Markov chain satisfying this condition is called a reversible Markov chain, and we
can show that in this case the distribution 𝜋 is stationary.

In order to numerically compute Eq. 3.1 using Monte Carlo integration with
MCMC, we want to generate samples according to some distribution proportional
to 𝑓 . In order to achieve the goal, we will introduce the Metropolis-Hastings (MH)
algorithm [77, 41], which is initially developed MCMC algorithm and often used in
various field including the light transport simulation. The transition kernel for the
algorithm, as known as Metropolis-Hastings update, is defined as follows procedure.
Given the current sample 𝑥𝑖 , we first choose a tentative sample 𝑥 ′

𝑖 ∼ 𝑇 (𝑥 ′
𝑖 |𝑥𝑖), where

𝑇 (𝑦 |𝑥) is transition kernel. Here we select the next sample according to the proba-
bility 𝑎(𝑥𝑖 , 𝑥 ′

𝑖 ). The next sample 𝑥𝑖+1 is define as

𝑥𝑖+1 =
⎧⎪⎪
⎨⎪⎪⎩

𝑥𝑖 , with probability 𝑎(𝑥 ′
𝑖 |𝑥𝑖),

𝑥 ′
𝑖 , otherwise,

(3.16)

where the probability 𝑎(𝑥𝑖 , 𝑥 ′
𝑖 ) is the acceptance ratio defined as

𝑎(𝑥𝑖 → 𝑥 ′
𝑖 ) = min(1,

𝑓 (𝑥 ′)𝑇 (𝑥 |𝑥 ′)
𝑓 (𝑥)𝑇 (𝑥 ′|𝑥) )

(3.17)

We note that Eq. 3.16 implies the integrand 𝑓 need not to be normalized, and we
can observe the transition kernel associated with the algorithm

𝐾 (𝑦 |𝑥) = 𝑎(𝑥, 𝑦)𝑇 (𝑦 |𝑥) +(1 − ∫
Ω
𝑎(𝑥, 𝑦)𝑇 (𝑦 |𝑥)𝑑𝜇(𝑦)) 𝛿𝑥 (𝑦) (3.18)

satisfies Eq. 3.15 with 𝑓 as the stationary distribution.
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Convergence We can show that if a Markov chain satisfies the following two con-
ditions, the chain converges to the target distribution: (1) 𝑓 -irreduciblewhich implies
that any part of the state space can be reached from the selection of the initial state
with finite mutations, and (2) 𝑎𝑝𝑒𝑑𝑖𝑜𝑑𝑖𝑐 which implies the Markov chain does not
contain cycles, a sequence of samples is converged to be distributed according to the
stationary distribution. Moreover, similar to SLLN for i.i.d. random number case,
the expected value of the 𝑁 -sample estimate 𝑦𝑁 converges to 𝐼 even when a Markov
chain satisfying above conditions is used as a sequence of samples, which is known
as (weak) Ergodic Theorem. We also note that MH update implicitly satisfies these
conditions with respect to the target distribution 𝑓 and the transition function.
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Chapter 4

Numerical Solutions of Light Transport

In this chapter, we will introduce the several light transport simulation techniques
and related concepts fundamental in the latest approaches. Especially, we focus on
the approaches using Monte Carlo method based on path sampling.

4.1 Early History

4.1.1 Deterministic to Stochastic

The ray-tracing is known as the origin of the light transport simulation. The algo-
rithm generates an image by tracing a set of rays from the side of the viewer and
determines the intersected surface position and the color. The basic idea of the al-
gorithm is initially described by Appel [4] for the hidden surface removal. The idea
is further extended to the recursive evaluation of the specular surfaces by Whit-
ted [121]. The use of random sampling in the light transport simulation is initially
attempted by Cook et al. [19]. They extended Whitted’s ray-tracing by the random
sampling in order to support the distributed effects such as the soft shadow, the
depth of field, or the motion blur. Hereafter, the development of the light transport
simulation began to focus on the global illumination algorithm, which is capable of
handling the lighting effects involving the indirect light transport.

4.1.2 FEM Based Rendering

Attempts to the indirect light transport are initiated from the approaches employing
the finite elementmethod (FEM). FEM is an general numerical integration techniques
making use of the partitioning of the integration domain. Goral et al. [27] initially
introduced the concept to the graphics community based on the literature of the heat
transfer, which is called the radiosity method. The radiosity method first subdivides
the scene surfaces into a set of patches. Utilizing FEM, the method computes the
indirect light transport between patches.

Assuming the scene surfaces are Lambertian diffuse surfaces, Eq. 2.34 can be
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rewritten to the transport equation with respect to the radiosity 𝐵(𝐱), one of the the
radiometric quantities representing the exitant energy per unit area:

𝐵(𝐱) = 𝐸(𝐱) +
𝜌(𝐱)
𝜋 ∫ 𝐵(𝐱′)𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′), (4.1)

where 𝐸(𝐱) is the radiant exitance at 𝐱 and 𝜌(𝐱) is the diffuse reflectance at 𝐱. Note
that the BSDF for Lambertian diffuse surface is defined as 𝑓𝑠(𝐱′ → 𝐱 → 𝐱′′) = 𝜌(𝐱)/𝜋 ,
where the term 1/𝜋 ensures energy conservation. We assume the surface geometry
 is approximated by 𝑁 small patches {𝑖}𝑖=1,…,𝑁 where  ≈ ∪𝑁𝑖=1𝑖 . Using this
partition, we can approximate the radiosity 𝐵(𝐱) by a linear weighted sum of the
basis functions 𝑁𝑖(𝐱):

𝐵(𝐱) ≈ 𝐵approx(𝐱) =
𝑁
∑
𝑖=1

𝐵𝑖𝑁𝑖(𝐱), (4.2)

where 𝑁𝑖(𝐱) has a compact support on 𝑖 , meaning the non-zero support of the
function 𝑁𝑖(𝐱) is defined only on the patch 𝑖 . Although various selection of the
basis function is possible [107], for the sake of simplicity, we will use the constant
basis function defined as 𝑁 (𝐱) = 1 if 𝐱 ∈ 𝑖 and 𝑁 (𝐱) = 0 otherwise.

The basic idea of FEM is to obtain the weights {𝐵𝑖}𝑖=1,…,𝑁 to achieve the mini-
mum error between 𝐵(𝐱) and 𝐵approx(𝐱). We are tempted to solve the minimization
problem on the residual 𝑟(𝐱) = 𝐵approx(𝐱) − 𝐵(𝐱) but unfortunately it is known to be
intractable. Instead of directly minimizing the residual 𝑟(𝐱), we will minimize the
weighted residual:

⟨𝑟(𝐱),𝑊𝑖(𝐱)⟩ = ∫ 𝑟(𝐱)𝑊𝑖(𝐱)𝑑𝐴(𝐱), (4.3)

where ⟨⋅, ⋅⟩ denotes inner product between the functions, and𝑊𝑖(𝐱) is the basis func-
tion having an local support on 𝑖 . The general approach of using the weighted
residual is called the weighted residual method.

Among the various selection of theweighting function𝑊𝑖(𝐱), we use theGalerkin
method. The method utilizes the basis function 𝑁𝑖(𝐱) as the weighting function. The
condition for the minimization of the weight residual then becomes

∫ 𝑟(𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(∗)

= 0, for all 𝑖. (4.4)

Expending LHS (*) with Eq. 4.2 and Eq. 4.3, we obtain a linear equation according
the weights 𝐵𝑖 called the radiosity equation:

𝐵𝑖 +
𝜌𝑖
𝜋

𝑁
∑
𝑗=1

𝐵𝑗𝐹𝑖,𝑗 = 𝐸𝑖 , (4.5)

where 𝜌𝑖 is the diffuse reflectance and 𝐸𝑖 is the exitant emittance both associated to
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the patch𝑖 . The term 𝐹𝑖,𝑗 is called the form factor. The term describes the fraction
of the energy emitted from the patch 𝑖 and received by the patch 𝑗 , which is
defined as

𝐹𝑖,𝑗 =
1
𝐴𝑖

∫𝑖
∫𝑗

𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)𝑑𝐴(𝐱), (4.6)

where 𝐴𝑖 is the area of the patch𝑖 . We note that the original formulation by Goral
et al. [27] assumes the scene contains no occluders, that is, the case that 𝑉 (𝐱 ↔ 𝐱′) is
always zero. The handling of visibility in the radiosity method is initially introduced
independently by two papers [86, 18]. Specifically, the expansion of (*) in Eq. 4.4 can
be calculated as

(∗) = ∫(𝐵approx(𝐱) − 𝐵(𝐱))𝑁𝑖(𝐱)𝑑𝐴(𝐱)

= ∫ 𝐵approx(𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(1)

− ∫ 𝐵(𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(2)

,

(1) = ∫ (
𝑁
∑
𝑗=1

𝐵𝑗𝑁𝑗(𝐱))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐵approx(𝐱)

𝑁𝑖(𝐱)𝑑𝐴(𝐱) =
𝑁
∑
𝑗=1

𝐵𝑗 ∫ 𝑁𝑗(𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛿𝑖,𝑗𝐴𝑖

= 𝐵𝑖𝐴𝑖 ,

(2) = ∫ (𝐸(𝐱) +
𝜌(𝐱)
𝜋 ∫ 𝐵approx(𝐱′)𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′))𝑁𝑖(𝐱)𝑑𝐴(𝐱)

= ∫ 𝐸(𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(3)

− ∫ 𝑁𝑖(𝐱)
𝜌(𝐱)
𝜋 ∫ 𝐵approx(𝐱′)𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)𝑑𝐴(𝐱)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(4)

,

(3) = ∫𝑖

𝐸𝑖𝑑𝐴(𝐱) = 𝐸𝑖𝐴𝑖 ,

(4) = ∫ 𝑁𝑖(𝐱)
𝜌(𝐱)
𝜋 ∫ (

𝑁
∑
𝑗=1

𝐵𝑗𝑁𝑗(𝐱))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐵approx(𝐱)

𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)𝑑𝐴(𝐱)

=
𝑁
∑
𝑗=1

𝐵𝑗 ∫ 𝑁𝑖(𝐱)
𝜌(𝐱)
𝜋 ∫ 𝑁𝑗(𝐱′)𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)𝑑𝐴(𝐱)

=
𝜌𝑖
𝜋

𝑁
∑
𝑗=1

𝐵𝑗𝐴𝑖
1
𝐴𝑖

∫𝑖
∫𝑗

𝐺(𝐱 ↔ 𝐱′)𝑑𝐴(𝐱′)𝑑𝐴(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹𝑖,𝑗

= 𝐴𝑖
𝜌𝑖
𝜋

𝑁
∑
𝑗=1

𝐵𝑗𝐹𝑖,𝑗 ,

(4.7)
where 𝛿𝑖,𝑗 is the Kronecker delta defined as 𝛿𝑖,𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖,𝑗 = 0 if 𝑖 ≠ 𝑗.
Eq. 4.5 can be obtained with dividing the both hand sides with 𝐴𝑖 . In the middle
of the calculation we implicitly used some identities such as ∫ 𝑓 (𝐱)𝑁𝑖(𝐱)𝑑𝐴(𝐱) =
∫′ 𝑓 (𝐱)𝑑𝐴(𝐱).

As a result, the radiosity method comes down to solving a linear equation Eq. 4.5.
We can use the general linear equation solvers. We often employ the iteration meth-
ods such as Jacobi iteration or Gauss-Seidel iteration. Some extensions of the radios-
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ity method facilitates the internal flow of the iteration methods into the technique.
The examples include the progressive radiosity [16], the stochastic radiosity [82,
83, 81], or the random walk radiosity [89, 96, 95]. The comprehensible introduc-
tion refers to the literature [8]. The other extensions of the radiosity method include
handling of the discontinuities of the meshes due to the illumination change [70, 48],
the adaptive mesh generation [12], the hierarchical structures [17, 40], the cluster-
ing [104], or the wavelet methods [28].

The major limitations on the FEM based approaches are their limited handling of
the surface geometry and the materials. Because every FEM based approach needs
the discretization of the surface geometry, the accuracy and the efficiency of the ren-
dering depends on the complexity of the surface topology. If the subdivision of the
surface is not enough, we can notice the discretization artifacts. Even if we can use
the adaptive remeshing scheme, it is still hard to handle the complex lighting effects
like caustics within the allowance of the trade-off between the quality and the com-
putation cost. Although there are some trials for supporting general materials in
the FEM approaches [50, 101, 100, 119], their support is still based on some assump-
tions and the approximations that cannot achieve the exotic features. Due to the
limitation above, unfortunately, FEM based approaches cannot meet the real-world
requirements for the increasing complexity and richness of the geometry and mate-
rials and this explains why the current research and the application mainly focus on
the approaches based on Monte Carlo method.

4.2 Light Transport Simulation Based on Path Sampling

In this section, we will describe the light transport simulation based on Monte Carlo
method, in particular those based on path sampling approaches. The general light
transport simulation with Monte Carlo method has initially formulated and estab-
lished by Kajiya [58] as the method named the path tracing. Followed by Kajiya,
Veach [112] elaborated the formulation with the introduction of the path space for-
mulation, as described in Chapter 2. The Kajiya’s original path tracing is build upon
the recursive formulation of the rendering equation (Eq. 2.28). Hense, the realization
of the path tracing based on the recursive formulation incurs the recursive estima-
tion of the integral. The estimation based on the recursive formulation is intuitively
understood because we can directly estimate the original rendering equation, but
their generality is still lacking when we want to consider the bidirectional transport.
In this section, therefore, we will focus on the path sampling techniques in the path
space formulation upon the explanation.
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4.2.1 Estimation With Path Sampling

We will start our discussion with the simple 𝑁 -sample estimate using the path sam-
pling. Recalling the path is defined as a sequence of surface point, we denote the
path with the length 𝑘 with the notation 𝑥 = 𝐱0 … 𝐱𝑘 . According to Eq. 2.41 and
Eq. 3.4, 𝑁−sample estimate 𝐼𝑘 of the measurement with path length 𝑘 can be written
as

𝐼𝑘 =
1
𝑁

𝑁
∑
𝑖=1

𝑓 (𝑥𝑖)
𝑝(𝑥𝑖)

, (4.8)

where 𝑓 (𝑥𝑖) is the measurement contribution function defined in Eq. 2.38 and 𝑥𝑖 ∼
𝑝(𝑥) is an i.i.d. set of samples. 𝑝(𝑥) is the pdf for path sampling, which is named as
the path sampler. We also call the process characterized by the density as the path
sampling technique.

The ultimate goal of the Monte Carlo method based approach is to design this
path sampling technique as efficiently as possible. According to the knowledge of
the importance sampling (Sec. 3.3.2), the goal is achieved when the density 𝑝(𝑥) can
perfectly generate samples according to the contribution function 𝑓 (𝑥𝑖). However, as
discussed in Sec. 3.3.2, it is virtually not possible because the contribution function
contains the scene-dependent terms like the geometry factor 𝐺(𝐱 ↔ 𝐲).

4.2.2 Designing Path Sampler

Given the difficulties ofmaking the perfect sampler, practicallywewant to design the
path sampling technique as similar to the contribution function as possible. Here we
will discuss on the design selection of the path samplers. In general, the path sampler
𝑝(𝑥) can be written as a joint pdf:

𝑝(𝑥) = 𝑝(𝐱0, 𝐱2,… , 𝐱𝑘). (4.9)

This joint pdf can be decomposed into the multiplication of the densities for the
several mutually dependent sequence of vertices 𝑥𝑖 , which we call the subpath:

𝑝(𝑥) = 𝑝(𝐱1,1𝐱1,2 … 𝐱1,𝑘1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1

) × 𝑝(𝐱2,1𝐱2,2 … 𝐱2,𝑘2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥2

) ×⋯ , (4.10)

where the subpath 𝑥𝑖 is a partition of the original path vertices {𝐱 ∈ 𝑥}, that is, 𝑥𝑖
satisfies ∪𝑖𝑥𝑖 = {𝐱 ∈ 𝑥} and {𝐱 ∈ 𝑥𝑖} ∩ {𝐱 ∈ 𝑥𝑗} = ∅ for all 𝑖 ≠ 𝑗. However this
equation is still in the general form and not yet practical. In order to derive the
practical decomposition, we assume the following two assumptions that the many
of the existing light transport simulation techniques assume.

First we assume the path sampler can be decomposed into the local samplers,
where each sampler is responsible for sampling a single vertex based on the infor-
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mation on the previous vertices. Using the local sampling, a subpath can be con-
structed by generating the vertices incrementally, making the random trajectories
over the entire scene. This way of sampling a path is called the incremental path
construction, or simply the random walk. This assumption comes from the physical
process analog that the photon is propagated and scattered incrementally by the sur-
face to the surface. The difference to the analog is that the actual sampling direction
is arbitrary, meaning we can sample the vertice to the direction from the side of the
sensor. Under this assumption, we can simplify the decomposition in Eq. 4.10 to

𝑝(𝑥) = 𝑝(𝐱0𝐱1… 𝐱𝑙1−1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1

) × 𝑝(𝐱𝑙1𝐱1 … 𝐱𝑙2−1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥2

) ×⋯ , (4.11)

where 𝐱𝑖 is a surface point of the input path 𝑥 . Here the vertices in the subpath 𝑥𝑖
becomes a consecutive surface points, instead of the random partition of the input
path vertices as in Eq. 4.10, because the dependent vertices are only constructed from
the adjacent vertices by the assumption. Following the assumption, furthermore,
the density 𝑝(�̄�) for each subpath �̄� = 𝐲1 … 𝐲𝑠 can be also decomposed using the
conditional pdfs as either

𝑝(�̄�) = 𝑝(𝐲1) × 𝑝(𝐲2|𝐲1) ×⋯ × 𝑝(𝐲𝑠−1|𝐲0,… , 𝐲𝑠−2) × 𝑝(𝐲𝑠 |𝐲0,… , 𝐲𝑠−1), or

𝑝(�̄�) = 𝑝(𝐲𝑠) × 𝑝(𝐲𝑠−1|𝐲𝑠) ×⋯ × 𝑝(𝐲1|𝐲𝑠 ,… , 𝐲2) × 𝑝(𝐲0|𝐲𝑠 ,… , 𝐲1).
(4.12)

The two pdfs differ in the direction of the sampling. The initial equation starts to
sample from the side of the vertex 𝐲1, on the other hand, the second equation starts
to sample the side of the vertex 𝐲𝑠 . We note that the conditional pdf often depends
on the just one before vertex. In this case, we simply denote the equation as

𝑝(�̄�) = 𝑝(𝐲1) × 𝑝(𝐲2|𝐲1) ×⋯ × 𝑝(𝐲𝑠−1|𝐲𝑠−2) × 𝑝(𝐲𝑠 |𝐲𝑠−1), or

𝑝(�̄�) = 𝑝(𝐲𝑠) × 𝑝(𝐲𝑠−1|𝐲𝑠) ×⋯ × 𝑝(𝐲1|𝐲2) × 𝑝(𝐲0|𝐲1).
(4.13)

Even with this assumption we still have a freedom to design the path sampler.
The second assumption limits the surface area sampling to the path edges, that is,
the vertex corresponding to the sensor and the light source. In other words, the as-
sumption means the sampling vertices must always start from the side of the sensor
or the light source. The rationale behind the assumption is the observation that the
sampling surface area in the middle of the paths is inefficient. We will explain the
observation in an empirical example where every vertex in the subpaths in Eq. 4.11
is a singleton that contain the single vertex and 𝑘 ≥ 2:

𝑝(𝑥) = 𝑝(𝑥1) ×⋯ × 𝑝(𝑥𝑘+1) = 𝑝(𝐱0) ×⋯ × 𝑝(𝐱𝑘). (4.14)
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In this case, the path sampling becomes a collection of vertex sampling of the surface
area. For instance, if we want to sample the scene surfaces in an uniform probability,
the densities becomes 𝑝(𝐱0) = ⋯ = 𝑝(𝐱𝑘) = 1

𝐴total
where𝐴total is a total area of the scene

surface. Although this sampling strategy is simple enough, unfortunately, this ways
of sampling leads to the high variance. The inefficiency comes from the connection
between the two adjacent vertices is likely to be have no contribution due to the visi-
bility. Tomakematters worse, this issue becomes significant as the complexity of the
scene surface increases. Furthermore, this sampling strategy cannot make use of the
importance sampling according to the BSDF associated with the surface, because the
distribution of the outgoing directions in BSDF needs the incoming direction, which
is only obtained with the information of the previous vertex. For some materials
containing delta functions like specular materials, this inability is critical and there
is eventually no way to sample these paths because any directions except for a single
outgoing direction which is deterministically calculated from an incoming direction
can have a contribution.

The second assumption avoids this kind of situation by limiting the surface sam-
pling to the edge vertices. Compared to the general surface sampling, the sampling
of the surface on the sensor or the light sources is simpler because generally the
total area (if they have) of the sensor or the light sources is much smaller than the
total area of the entire scene surface. This means we can construct the specialized
surface sampling targeted only to a part of scene surface where the sensor or the
light sources are defined. With this assumption, the number of subpaths in Eq. 4.11
becomes one or two because otherwise at least one intermediate vertex is sampled
from the surface. Furthermore, the decomposed conditional pdfs for each subpath in
Eq. 4.13 can be simplified to one candidate, because each subpath contains exactly
one edge vertex. Finally, we have the path pdf defined as

𝑝(𝑥) = 𝑝(𝐲0𝐲1 … 𝐲𝑠−1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̄�

) × 𝑝(𝐳0𝐳1 … 𝐳𝑡−1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑧

), (4.15)

in the case that the number of subpaths are two. Here we introduced the another no-
tations for the subpaths from the each edges as a beginning defined as �̄� = 𝐲0… 𝐲𝑠−1 =
𝐱0 … 𝐱𝑠−1 and 𝑧 = 𝐳0… 𝐳𝑡−1 = 𝐱𝑘 … 𝐱𝑠 , where 𝑠 or 𝑡 denote the number of vertices re-
spectively in the subpaths �̄� or 𝑧. Likewise, the path pdf in the case of the single
subpath can be written as either

𝑝(𝑥) = 𝑝(𝐲0𝐲1… 𝐲𝑘⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̄�

), or 𝑝(𝑥) = 𝑝(𝐳0𝐳1… 𝐳𝑘⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑧

), (4.16)

depending the direction of the sampling either from the side of the sensor or the
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light source. For convenience, we allow the empty subpath ∅ with the number of
the vertices is zero and define the pdf for the empty subpath as 𝑝(∅) = 1. Then we
can merge the case in Eq. 4.16 into the case with Eq. 4.15. In this case, the number
of vertices in each subpath is either (𝑠, 𝑡) = (𝑘 − 1, 0) or (𝑠, 𝑡) = (0, 𝑘 − 1). Categorized
by the type of the edge vertex, we shall call the subpath �̄� as the light subpath and
the subpath 𝑧 as the eye subpath. The pdf for these subpaths 𝑝(�̄�) and 𝑝(𝑧) can be
unambiguously defined as

𝑝(�̄�) = 𝑝(𝐲0) × 𝑝(𝐲1|𝐲0) ×⋯ × 𝑝(𝐲𝑠−2|𝐲𝑠−3) × 𝑝(𝐲𝑠−1|𝐲𝑠−2),

𝑝(𝑧) = 𝑝(𝐳0) × 𝑝(𝐳1|𝐳0) ×⋯ × 𝑝(𝐳𝑡−2|𝐳𝑡−3) × 𝑝(𝐳𝑡−1|𝐳𝑡−2).
(4.17)

Now we have a set of path sampling technique based on the two assumptions.
We call the path sampling strategy satisfying the two assumptions as the vertex con-
nection. In summary, the first assumption determines the order of the vertices and
limits the way of path sampling for the dependent vertices. The second assumption
determines the number of dependent components of vertices and determines the
way to sample the subpaths into the smaller set. Many of the light transport sim-
ulation techniques assume these two assumptions, although it might not be stated
explicitly. We assume the following discussion relies on the path sampling strategy
based on these assumptions, unless specified otherwise.

Finally we note that some of the light transport simulation techniques alleviated
these assumptions and achieved the advanced path sampling technique. One notable
alleviation is to make it possible to sample the multiple vertices from a single joint
density, which is specifically called the joint importance sampling.

4.2.3 Sampling Subpaths

In the pdf for subpath sampling (Eq. 4.17), the decomposed vertex sampling pdfs can
be categorized into two groups: the unconditional pdf 𝑝(𝐱) for the edge vertices, and
and the conditional pdf 𝑝(𝐱|𝐱′) for the internal vertices. Typically the edge vertices
are directly sampled the surface position representing the sensor or the light source.
On the other hand, due to the assumptions, the internal vertices are indirectly sam-
pled by tracing the ray (𝜔, 𝐱′) based on the randomly-sampled direction 𝜔 and the
current vertex position 𝐱′. The direction 𝜔 is actually sampled from the directional
density 𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖) with respect to the solid angle measure 𝑑𝜎 , where 𝜔𝑖 is the in-
coming direction. Because the target density 𝑝(𝐱|𝐱′) is defined on the area measure
𝑑𝐴, the density 𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖)must be converted to the area measure. According to the
chain rule, the conversion between the corresponding densities can be achieved by
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the multiplication of the Jacobians:

𝑝(𝐱|𝐱′) =
||||
𝑑𝜎
𝑑𝐴

||||
𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖) =

||||
𝑑𝜎⊥

𝑑𝐴
||||

||||
𝑑𝜎
𝑑𝜎⊥

||||
𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖), (4.18)

where 𝑑𝜎⊥ is the project solid angle measure. According to the discussion in Chap-
ter 2, each Jacobian can be obtained as ||𝑑𝜎

⊥/𝑑𝐴|| = 𝐺(𝐱 ↔ 𝐱′) (Eq. 2.32) and ||𝑑𝜎 /𝑑𝜎
⊥|| =

1/|𝐧𝐱′ ⋅ ⃖⃖⃖⃗𝐱′𝐱|. Substituting these Jacobians, and assuming the vertices 𝐱 and 𝐱′ are al-
ready mutually visible, this equation further becomes

𝑝(𝐱|𝐱′) =
𝐺(𝐱 ↔ 𝐱′)

|𝐧𝐱′ ⋅ ⃖⃖⃖⃗𝐱′𝐱|
𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖) =

|𝐧𝐱 ⋅ ⃖⃖⃖⃗𝐱𝐱′|
‖𝐱 − 𝐱′‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺′(𝐱↔𝐱′)

𝑝𝜎 (𝜔|𝐱′, 𝜔𝑖), (4.19)

where 𝐺′(𝐱 ↔ 𝐱′) is called the one-sided geometry term, which removes one cosine
terms with respect to the outgoing direction from the geometry term. In practice, the
direction 𝜔 is obtained by the changing domains from the uniform random numbers
𝐮 ∈ [0, 1]𝑛, where 𝑛 depends on the implementation of the sampler. Typically we use
𝑛 = 3 where two of them are used for sampling direction, and the rest for sampling
the type of thematerials. In this case, because the pdf 𝑝 for the uniform distribution
is always evaluated to one, the path vertex pdf 𝑝(𝐱|𝐱′) can be written as

𝑝(𝐱|𝐱′) =
||||
𝑑𝐮
𝑑𝐴

||||
𝑝 (𝐮|𝐱′, 𝜔𝑖)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

=
||||
𝑑𝐮
𝑑𝐴

||||
, (4.20)

where 𝑑𝐮 is the Lesbegue measure associated to the pdf of the uniform distribution.
This implies the vertex pdf can be utilized to obtain the Jacobian for changing the
area measure 𝑑𝐴 and the Lesbegue measure 𝑑𝐮. Similarly, we can express the path
pdf 𝑝(𝑥) with the Jacobian between the area product measure 𝑑𝜇 and the Lesbegue
measure 𝑑𝐮 for the corresponding uniform randomnumbers used to sample the path:

𝑝(𝑥) =
||||
𝑑𝐮
𝑑𝜇

||||
. (4.21)

We note that, converted from Eq. 2.41, this equation implies another form of light
transport equation changing the integration domain to a set of uniform randomnum-
bers  = [0, 1]𝑛(𝑘−1), where 𝑘 − 1 is the number of vertices in the path 𝑥 :

𝐼 = ∫ 𝑓 (𝑥(𝐮))
||||
𝑑𝜇
𝑑𝐮

||||
𝑑𝐮 = ∫ 𝑓 (𝑥(𝐮))

||||
𝑑𝐮
𝑑𝜇

||||

−1

𝑑𝐮 = ∫
𝑓 (𝑥(𝐮))
𝑝(𝑥(𝐮))

𝑑𝐮, (4.22)

wherewe denote the path dependent on 𝐮 as 𝑥(𝐮) and used the identity on the inverse
determinant |𝑑𝜇/𝑑𝐮| = |𝑑𝐮/𝑑𝜇|−1. We will use this equation in the discussion later in
Chapter 6.
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(a) (b)

(c) (d) (e)

Figure 4.1: Classification of the path sampling techniques. (a) Path tracing traces the
rays and construct a path from the side of the sensor until it finds a light source.
(b) Path tracing with next event estimation explicitly connect the position on the
light sources while traversing the rays. (c) Light tracing is a dual of path tracing
with next event estimation, which traces rays from the side of the light source and
connect explicitly to the position on the sensor every time the ray intersects the
surfaces. (d) A hypothetical technique which is induced as a dual of path tracing. (e)
Bidirectional path tracing is the generalization of the four techniques. The technique
traces the rays from the both sides and construct a set of paths by connecting the
vertices on both sides.

4.2.4 Classification of Path Sampling Techniques

We will discuss on the connection between the path sampling technique introduced
above and existingMonte Carlo method based light transport simulation algorithms.
We will classify the path sampling technique according to the number of vertices in
the eye and light subpaths (𝑠, 𝑡), where 0 ≤ 𝑠, 𝑡 < 𝑘 and 𝑠 + 𝑡 = 𝑘 − 1. The visual
overview of the classification is summarized in Fig. 4.1.

Path tracing proposed by Kajiya [58] is the first and the most basic light transport
simulation algorithm based on Monte Carlo method (Fig. 4.1a). Although the algo-
rithm is originally formulated in the recursive formulation (Eq. 2.31), the process can
be understood in the path space framework. Path tracing constructs the path from
the side of the sensor, that is, the vertex 𝐱𝑘 and incrementally construct the path by
sampling the directions and tracing the rays depending on the current vertex. The
termination of the path is determined stochastically by the technique known as rus-
sian roulette. We note that the ray intersection to the light source is not always an
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stopping condition except for the underlying albedo is zero, meaning the case that
the contribution including the vertex turns out to be zero. Using the (𝑠, 𝑡) notation,
path tracing can be classified with path sampling techniques with (𝑠, 𝑡) = (𝑘 − 1, 0).

Path tracing with next event estimation is a variant of path tracing which is also
proposed by Kajiya [58] (Fig. 4.1b). The algorithm is almost similar to path tracing;
generates a sequence of vertices by sampling the directions and tracing the rays from
the side on the sensor. The different between the ordinary path tracing is whenever
the ray intersect a new surface, the algorithm creates an explicit connection to a light
source, for instance by sampling the position on the light source, instead of creating
an implicit connection by the intersection to the light source itself. In other word,
the next event estimation always samples a light subpath with a single vertex and
create a complete path by connecting the last vertex in the eye subpath. The next
event estimation is classified with path sampling techniques with (𝑠, 𝑡) = (𝑘 − 2, 1).

Light trancing proposed by Arbo [5] is a dual technique to path tracing with
next event estimation (Fig. 4.1c). Instead of tracing the path from the sensor, light
tracing traces the path from the light source. That is, a complete path is constructed
by initially sampling the position on the light source, and incrementally sample a
sequence of samples by tracing the random ray directions. Similar yet different from
path tracing with next event estimation, the algorithm creates an explicit connection
whenever the ray intersect the surface to the randomly sampled position on the
sensor. The classification of light tracing is (𝑠, 𝑡) = (1, 𝑘 − 2).

Although not used frequently, we can consider a dual technique to path tracing
(Fig. 4.1d). Similar to light tracing, the technique traces a rays from the side of the
light source. Yet instead of finding the explicit connection to the sensor, a path is con-
structed by finding an implicit intersection to the sensor. This group of techniques
is useless in most cases, because the actual camera models we use often assume the
small or degenerated aperture. For instance for the pinhole camera model, the prob-
ability of finding an intersection to a point is represented by a delta function, hense
the path with positive contribution cannot be possible with intersecting to the point
itself, which of course results in zero probability — the final image turn out to be
always black. We can classify this technique as (𝑠, 𝑡) = (0, 𝑘 − 1).

Bidirectional path tracing proposed independently by Lafortune andWillems [66]
and Veach and Guibas [113] facilitates the path constructed both from the sensor and
the light sources. The idea of bidirectional path tracing is to construct a path by an
explicit connection of the two vertices respectively in the eye and light subpaths
(Fig. 4.1d). In this sense, we can consider bidirectional path tracing as a generaliza-
tion of the four path sampling techniques that we introduced above. Also bidirec-
tional path tracingmakes use of combining several possible path sampling technique
to generate a single image by making use of the multiple importance sampling. The
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(𝑠, 𝑡) = (2, 2) (𝑠, 𝑡) = (1, 3) (𝑠, 𝑡) = (0, 4)

Complete path 𝑥 (𝑠, 𝑡) = (4, 0) (𝑠, 𝑡) = (3, 1)

Figure 4.2: Multiple ways to construct a single path 𝑥 for the path with length 𝑘 = 3.
In this case, the number of strategies that can generate the path 𝑥 is five. The strate-
gies are classified with all possible combinations of the number of vertices in the
eye and light subpaths. The pair (𝑠, 𝑡) under the figures illustrates the corresponding
strategies.

path sampling by bidirectional path tracing can handle the most general case, so we
can classify the technique as all possible combination of paths represented by (𝑠, 𝑡).

4.2.5 Combining Multiple Path Sampling Strategies

We can notice that a single path can be generated from the multiple sampling strate-
gies. For instance, in case of bidirectional path tracing, the path with length 𝑘 has
𝑘 +2 different ways to construct a single path. Fig. 4.2 illustrates the case with 𝑘 = 3.
This means accumulating the contribution from these paths can result to double-
count the contribution of the paths with specific length, which eventually becomes
a bias of the estimate. In order to compensate the bias, we need to normalize the
estimated contribution by multiplying the weights according to the combined path
sampling techniques. Based on the idea, Veach [116] proposed multiple importance
sampling as a general sampling technique to combine multiple sampling strategies
for a single estimate (Sec. 3.3.2). In the case of bidirectional path tracing, the multi-
sample estimate (Eq. 3.9) for all possible combinations of the techniques (𝑠, 𝑡) ∈ 
can be written as

𝐼MIS = ∑
(𝑠,𝑡)∈ 𝑤𝑠,𝑡(𝑥𝑠,𝑡)

𝑓 (𝑥𝑠,𝑡)
𝑝𝑠,𝑡(𝑥𝑠,𝑡)

, (4.23)
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where we assigns one sample for each strategy explicitly denote the path pdf cor-
responding to the strategy (𝑠, 𝑡) as 𝑝𝑠,𝑡(𝑥) and the path sampled from the density as
𝑥𝑠,𝑡 ∼ 𝑝𝑠,𝑡(𝑥). The selection of the weights is arbitrary as long as the two conditions
(Sec. 3.3.3) are met. In his paper, Veach suggested to use power heuristics with 𝛽 = 2
(Eq. 3.12). Combined with multiple importance sampling, bidirectional path tracing
can alleviate the trade-offs in terms of the efficiencies between the different sampling
strategies.

4.2.6 Path Reusal

Practically the concept of path reusal is important for the efficient path generation.
Path reusal is a concept of generating a path based on other paths, which make it
possible to generate multiple paths with smaller computation costs, compared to the
case that the paths are generated independently from scratch. Path reusal is uniq-
uitous in modern rendering techniques and many techniques explicitly or implicitly
utilize the power of path reusal in their implementation. The examples include (bidi-
rectional) path tracing, many light approaches, or photon density estimation based
approaches.

Path Reusal in Path Tracing For instance, in case of path tracing without next
event estimation, we consider the path 𝑥𝑘 with path length 𝑘 is generated sequen-
cially sample the 𝑘 + 1 vertices from a sensor. Next when we want to sample a new
path 𝑥𝑘+1 with path length 𝑘 + 1, instead of resampling again from scratch, we can
generate a single vertex 𝐱𝑘+1 and construct a new path as 𝑥𝑘+1 = 𝑥𝑘𝐱𝑘+1 by reusing
the path with length 𝑘. Thus we can save the computation cost for sampling the
𝑘 + 1 vertices again. We note that the two paths 𝑥𝑘 and 𝑥𝑘+1 are correlated, but these
samples contribute to the different estimates as the paths are samples for different
path lengths, recalling the pixel intensity in Eq. 2.41 is defined for each path length.
We still use a single sample for each estimate so we do not have to consider the error
due to the correlation in this case.

Path Reusal in Bidirectioanl Path Tracing The use of path reusal becomes less
obvious in the bidirectional case. As we explained the aforementioned sections, the
paths in bidirectional path tracing are generated by combining the subpaths sampled
from a sensor and a light source. Similar to the case of path tracing, the process
of sampling subpaths can facilitate the reusal of paths with different lengths. For
instance, we can generate a sequence of light subpaths (�̄�1,… , �̄�𝑘𝐿) where

�̄�1 = 𝐲0𝐲1, �̄�2 = �̄�1𝐲2, … , �̄�𝑘𝐿 = �̄�𝑘𝐿−1𝐲𝑘𝐿 , (4.24)
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by just sampling a single batch of the path vertices (𝐲0,… , 𝐲𝑘𝐿). Similarly, we can
generate a sequence of eye subpaths (𝑧1,… , 𝑧𝑘𝐸 ) utilizing path reusal as

𝑧1 = 𝐳0𝐳1, 𝑧2 = 𝑧1𝐳2, … , 𝑧𝑘𝐸 = 𝑧𝑘𝐸−1𝐳𝑘𝐸 . (4.25)

Using the set of subpaths, a set of (full) paths with lengths 𝑘 that can be generated
with all strategies can be written as

(�̄�𝑘 ⊕ ∅
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑥𝑘,0

, �̄�𝑘−1 ⊕ 𝑧1⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑥𝑘−1,1

,⋯ , �̄�𝑠 ⊕ 𝑧𝑡⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑥𝑠,𝑡

,⋯ , �̄�1 ⊕ 𝑧𝑘−1⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1,𝑘−1

,∅ ⊕ 𝑧𝑘⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑥0,𝑘

), (4.26)

where 𝑠+𝑡 = 𝑘 and ⊕ is the concatenation operator. We note that the full combination
of paths cannot be generated from the subpaths. For instance, the path with length
𝑘 = 𝑘𝐿 + 𝑘𝐸 should generate 𝑘𝐿 + 𝑘𝐸 + 1 number of paths. but we actually get a single
path �̄�𝑘𝐿 ⊕ 𝑧𝑘𝐸 .

Variance of Multi Sample Estimate With Correlated Samples Unlike path
tracing, the paths generated by Eq. 4.26 are correlated. This affects the convergence
behavior of the variance because the samples in multi-sample estimate (Eq. 3.9) are
assumed to be uncorrelated. Fortunately, the effect of correlation of the samples be-
tween the different strategies are limiting, because we can show that the correlation
between the samples generated from the different strategy is diminishing toward
zero as the number of samples is getting larger. In other words, the correlation of
multi-sample estimate is mainly influenced by the correlation of the samples gener-
ated for the same strategy. In case of bidirectional path tracing, the samples in the
same strategy are i.i.d. so we can safely ignore the effect from the correlation.

We will show the correlation between the samples generated from the different
strategy becomes zero as the number of samples 𝑁 → ∞, in case of using multi-
sample estimate with aforementioned path reusal. We first start from the multi-
sample estimate in Eq. 3.9:

𝐼MIS =
𝑀
∑
𝑖=1

1
𝑁𝑖

𝑁𝑖

∑
𝑗=1

𝑤𝑖(𝑥𝑖,𝑗)
𝑓 (𝑥𝑖,𝑗)
𝑝𝑖(𝑥𝑖,𝑗)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹𝑖,𝑗

=
𝑀
∑
𝑖=1

1
𝑁𝑖

𝑁𝑖

∑
𝑗=1

𝐹𝑖,𝑗 , (4.27)

where 𝑀 is the number of strategies and 𝑁𝑖 ≤ 𝑁 is the number of samples for the
𝑖-th strategy. We also denote the inner term as 𝐹𝑖,𝑗 . In general, the variance of the
sum of correlated random variables (𝑋1,… , 𝑋𝑁 ) can be written as

Var(
𝑁
∑
𝑖=1

𝑋𝑖) =
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

Cov(𝑋𝑖 , 𝑋𝑗), (4.28)
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whereCov(⋅, ⋅) is the covariance between two randomvariables defined asCov(𝑋, 𝑌 ) =
𝔼[(𝑋 − 𝔼[𝑋 ])(𝑌 − 𝔼[𝑌 ])]. We note that Cov(𝑋, 𝑋 ) = Var(𝑋 ) by definition. Using this
identity, the variance of the multi-sample estimate can be written as

Var(𝐼MIS) =
𝑀
∑
𝑖1=1

𝑀
∑
𝑖2=1

1
𝑁𝑖1𝑁𝑖2

𝑁𝑖1

∑
𝑗1=1

𝑁𝑖2

∑
𝑗2=1

Cov(𝐹𝑖1,𝑗1 , 𝐹𝑖2,𝑗2). (4.29)

The first two sums are separated into two components: (1) the component that the
strategies are same (𝑖1 = 𝑖2) and (2) the component that the strategies are different
(𝑖1 ≠ 𝑖2).

=
𝑀
∑
𝑖=1

1
𝑁 2
𝑖

𝑁𝑖

∑
𝑗1=1

𝑁𝑖

∑
𝑗2=1

Cov(𝐹𝑖,𝑗1 , 𝐹𝑖,𝑗2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(1)

+ ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

𝑁𝑖1

∑
𝑗1=1

𝑁𝑖2

∑
𝑗2=1

Cov(𝐹𝑖1,𝑗1 , 𝐹𝑖2,𝑗2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(2)

. (4.30)

In case of bidirectional path tracing, the samples in the same strategy are i.i.d., be-
cause each strategy generates only one sample for each epoch, that is, for each
𝑗. This implies the correlation between the samples in the same strategy is zero:
Cov(𝐹𝑖,𝑗1 , 𝐹𝑖,𝑗2) = 0 when 𝑗1 ≠ 𝑗2. Therefore we have

(1) =
𝑀
∑
𝑖=1

1
𝑁 2
𝑖

𝑁𝑖

∑
𝑗=1

Cov(𝐹𝑖,𝑗 , 𝐹𝑖,𝑗) =
𝑀
∑
𝑖=1

1
𝑁 2
𝑖

𝑁𝑖

∑
𝑗=1

Var(𝐹𝑖,𝑗), (4.31)

where we used the identity Cov(𝐹𝑖,𝑗 , 𝐹𝑖,𝑗) = Var(𝐹𝑖,𝑗). We can further rewrite the equa-
tion using the fact that the samples 𝑥𝑖,𝑗 distributed to the same distribution of 𝑖-th
strategy, by introducing the single-sample estimate of 𝐹𝑖 ≡ 𝐹𝑖,0:

=
𝑀
∑
𝑖=1

1
𝑁 2
𝑖

𝑁𝑖

∑
𝑗=1

Var(𝐹𝑖) =
𝑀
∑
𝑖=1

1
𝑁 2
𝑖
⋅ 𝑁𝑖 ⋅ Var(𝐹𝑖) =

𝑀
∑
𝑖=1

1
𝑁𝑖

⋅ Var(𝐹𝑖). (4.32)

Similarly, in case of the case in the component (2), we can assume the correlation
between the different strategies are zero because the path reusal is utilized to gener-
ate a set of paths for the strategy in the same epoch and the samples with different
epochs are mutually independent. Therefore we have

(2) = ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

⎛
⎜
⎜
⎝
∑
𝑗
Cov(𝐹𝑖1,𝑗 , 𝐹𝑖2,𝑗) + ∑

𝑗1≠𝑗2
Cov(𝐹𝑖1,𝑗1 , 𝐹𝑖2,𝑗2)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

⎞
⎟
⎟
⎠

= ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

∑
𝑗
Cov(𝐹𝑖1,𝑗 , 𝐹𝑖2,𝑗).

(4.33)

Here, the Cauchy-Schwarz inequality for the two random variable 𝑋 and 𝑌 states
that Cov(𝑋, 𝑌 )2 ≤ Var(𝑋 )Var(𝑌 ). Using this inequality, the component (2) can be
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bounded as

|(2)| ≤ ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

∑
𝑗
||Cov(𝐹𝑖1,𝑗 , 𝐹𝑖2,𝑗)||

≤ ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

∑
𝑗
(Var(𝐹𝑖1,𝑗)Var(𝐹𝑖2,𝑗))

1/2

≤ ∑
𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

∑
𝑗
𝑉 = ∑

𝑖1≠𝑖2

1
𝑁𝑖1𝑁𝑖2

⋅min (𝑁𝑖1 , 𝑁𝑖2) ⋅ 𝑉

= ∑
𝑖1≠𝑖2

min (
1
𝑁𝑖1

,
1
𝑁𝑖2

) ⋅ 𝑉𝑖1,𝑖2 ,

(4.34)

where 𝑉𝑖1,𝑖2 = max𝑗,𝑖∈{𝑖1,𝑖2} Var(𝐹𝑖,𝑗) and we used the triangle inequality for the first
bound. Wrapping up the aforementioned discussion, we finally have an inequality

Var(𝐼MIS) ≤
𝑀
∑
𝑖=1

1
𝑁𝑖

⋅ Var(𝐹𝑖) + ∑
𝑖1≠𝑖2

min (
1
𝑁𝑖1

,
1
𝑁𝑖2

) ⋅ 𝑉𝑖1,𝑖2 . (4.35)

From this inequality, we have lim𝑁→∞ Var(𝐼MIS) = 0 because 𝑁 → ∞ implies 𝑁𝑖 →
∞. This inequality also implies the convergence ratio of the variancewith path reusal
is not so worse than the case without correlations.
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Chapter 5

Bridging Strategy Spaces of Light
Transport Simulations

5.1 Introduction

Rendering based on light transport simulation is a popular approach for photore-
alistic image synthesis. Since such rendering algorithms solve the same governing
equations (e.g., the rendering equation [58]), rendering with light transport simu-
lation should give us the same result regardless of the choice of an algorithm. It is
however well known that some algorithms are more efficient at rendering certain
light transport effects. For example, photon density estimation [54, 34] is often effi-
cient at rendering caustics, and Markov chain Monte Carlo algorithms [117, 52] are
considered efficient at resolving complex occlusions.

Because of the varying efficiency of different algorithms on different light trans-
port effects, it is common practice to select an algorithm based on the type of light
transport effect that one wants to render. In the movie industry, an artist often de-
composes light transport effects into separate images, renders each with a most ef-
ficient algorithm, and composites the resulting images into the final one. Selecting
appropriate algorithms and composting the results, however, can be difficult and
cumbersome tasks. For selection, an artist either needs to know why some algo-
rithms work well for some effects, or briefly tries all the available algorithms to see
which one works well. For composition, an artist also needs to pay attention not to
double count a certain type of paths such as caustics.

We propose a framework which automates this selection of the algorithms and
composition of the resulting images. Our work is inspired by the superhuman per-
formance of recentmachine learning algorithms on classification tasks. We apply the
same idea to select and composite two different rendering algorithms based on the
classification of light transport effects. To be concrete, we use regression forests [10]
to learn the relationship between blending weights that minimize the error and the
classification of light transport effects. While multiple importance sampling [116]
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Figure 5.1: General idea of blending the results of two different rendering algorithms
using regression forests. In the training phase (top), we first calculate the optimal
blending weight per pixel, given the reference image and rendered images with dif-
ferent approaches. These weights and the corresponding path features become one
training sample for the regression forest for each scene. We iterate this process
for various scenes. Our framework thus learns the relationship between input path
features and optimal weights during this learning phase. At runtime (bottom), the
trained regression forest returns approximated optimal blending weights based on
path features of a new scene.

also allows us to blend results of different rendering techniques, the key difference
is that our framework treats each rendering algorithms as a black-box. Accordingly,
our framework can be easily applied to very different algorithms such as SPPM and
MLT without any algorithmic or theoretical modifications for each. To summarize,
our contributions are:

• The use of machine learning to automatically blend the results of different
rendering algorithms based on path types.

• A blending framework which is independent from how the underlying ren-
dering algorithms work.
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• First successful application of regression forests to light transport simulation.

5.2 Overview

Our goal is to blend the results of two different rendering algorithms such that the
error of the blended result is as small as possible. Our algorithm is separated into
two phases; the training phase and runtime. Fig. 7.1 illustrates the algorithm.

In the training phase, we use regression forests [10] (Section 5.4) to learn the
relationship between a feature vector of lighting effects extracted from the rendered
images and the optimal weights for blending. For each training scene, we render
the reference solution, and the two images with both algorithms allocating the same
rendering time. Based on the rendered images, we extract path features as the rel-
ative pixel contributions of different light transport paths according to Heckbert’s
notation [47]. Modern shader languages often support the same mechanism [30].
We then calculate the optimal blending weights based on the reference solution and
the results of the two different rendering algorithms. The optimal blending weight
is defined such that the error of the blended result is minimized at each pixel. A
pair of path features and the optimal blending weight forms one training sample for
regression forests. If a rendering algorithm is based on Monte Carlo methods (which
is the case in our experiments), we generate multiple training samples for the same
scene in order to avoid the influence of the randomness of rendered images.

At runtime, we use the trained regression forest to approximate the optimal
blending weights for a given new scene. The path features extracted from the ren-
dered images are used to traverse the regression forest to obtain the blendingweights.
The final result is a blended image with the obtained weights. Since the trained re-
gression forest expresses the relationship between path features and the optimal
weights, a blended image is expected to have small error, even for a scene that was
not included in the training phase.

5.3 Automatic Blending with Path Features

5.3.1 Path Features

Our definition of a feature vector for rendering algorithms is inspired by how artists
decompose a rendered image into several images with specific lighting effects for
each. In order to define the feature vectors, we begin with the formulation of the
light transport known as the path integral formulation [112]. According to the for-
mulation, the pixel intensity 𝐼 observed at each pixel is expressed as

𝐼 = ∫
Ω
𝑓 (𝑥)𝑑𝜇(𝑥), (5.1)
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where 𝑥 is a light transport path, 𝑓 is the measurement contribution function, and 𝜇
is the path measure. Ω is the space of paths of all different path lengths.

The path space Ω can be partitioned into a union of disjoint spaces according to
the classification by Heckbert [47]:

Ω = ΩLDE ∪ ΩLSE ∪ ΩLDSE ∪ ΩLSDE ∪⋯ , (5.2)

where each Ω∗ is a subspace of Ω defined with the paths represented by the Heck-
bert’s notation ∗. For instance, the subspace Ω𝐿𝐷𝑆𝐸 with path length 3 is defined as a
set of paths 𝑥 = 𝐱0𝐱1𝐱2𝐱3 where 𝐱0 is on a sensor, 𝐱1 is on a diffuse surface, 𝐱2 is on
a specular surface, and 𝐱3 is on an emitter. A glossy interaction is classified to either
𝐷 or 𝑆 depending on its BRDF.

We thus define a part of the intensity 𝐼∗ contributed only with the subspace Ω∗ as

𝐼∗ = ∫
Ω∗

𝑓 (𝑥)𝑑𝜇(𝑥). (5.3)

Since the partition in Equation 5.2 is disjoint, the pixel intensity 𝐼 is additive:

𝐼 = 𝐼LDE + 𝐼LSE + 𝐼LDSE + 𝐼LSDE +⋯ . (5.4)

We thus define the path features 𝜙 as a vector of the intensities 𝐼∗ relative to 𝐼 :

𝜙 ≡
(𝐼LDE, 𝐼LSE, 𝐼LDSE, 𝐼LSDE,… )

𝐼
. (5.5)

The definition uses relative intensities such that 𝜙 is independent from the absolute
intensity. We fixed the maximum path length to ten, which makes 𝜙 a 2(10−1) = 512
dimensional feature vector. The training phase uses an estimate 𝜙 instead of the an-
alytical value of 𝜙 for a given rendering time. We selected the number of dimensions
such that all the data fits within the main memory. For instance, the scene rendered
with 720p resolution requires a storage of 512 × 1280 × 720 × 4 bytes ≈ 1.8 gigabytes.

5.3.2 Optimal Blending Weights

In the training phase, we need to determine the optimal blendingweight. Thisweight
is used as an answer associated with a path feature vector. A pair of a path feature
vector and the optimal blending weight thus becomes a training sample for super-
vised learning via regression forests.

We define the optimal blending weight 𝑤opt that gives the minimum error as

𝑤opt = argmin
𝑤

||||(
𝑤𝐼𝛼 + (1 − 𝑤)𝐼𝛽) − 𝐼

||||
, (5.6)
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where 𝐼𝛼 and 𝐼𝛽 are the results of two different rendering algorithms 𝛼 and 𝛽 respec-
tively, and 𝐼 is the reference solution. This equation can be easily solved as

𝑤opt =
𝐼 − 𝐼𝛽
𝐼𝛼 − 𝐼𝛽

. (5.7)

If the solution of Equation 5.6 is not in the range of [0, 1], it is clamped to the nearest
side such that 𝑤opt ∈ [0, 1]. We apply this clamping such that the blending operation
becomes a convex combination of the results. The blended result 𝑤𝐼𝛼 + (1 − 𝑤)𝐼𝛽 is
thus guaranteed to be more accurate than one of 𝐼𝛼 and 𝐼𝛽 since

|𝑤𝐼𝛼 + (1 − 𝑤)𝐼𝛽 − 𝐼 | ≤ max(|𝐼𝛼 − 𝐼 |, |𝐼𝛽 − 𝐼 |) (5.8)

by definition if 𝑤 ∈ [0, 1]. Intuitively, this clamping process sets 𝑤opt = 1 when 𝐼𝛼
and 𝐼𝛽 both either underestimate or overestimate 𝐼 and 𝐼𝛼 is closer to 𝐼 (vice versa
for 𝐼𝛽 ). If one of the 𝐼𝛼 and 𝐼𝛽 underestimates and the other overestimates 𝐼 , we set
𝑤opt such that the blended result is exactly equal to 𝐼 . Note that Equation 5.8 only
guarantees that an error per pixel does not become worse, not the sum of errors over
an image. For example, collecting pixels with worse errors (with 𝑤 = 0 or 𝑤 = 1)
still satisfies Equation 5.8, but the sum of errors would increase.

The intensities 𝐼𝛼 and 𝐼𝛽 are the relatively rough estimates of 𝐼 in practice. If an
algorithm is based on Monte Carlo ray tracing, an estimated intensity is an instance
of the random variable for each run. Using samples only from a single run of the
algorithm causes overfitting to this specific run. For example, it might be that 𝐼𝛼
happens to be closer to 𝐼 than 𝐼𝛽 for the single run used in the training phase.

In order to deal with this issue, we use multiple training samples even for the
same scene and the same algorithm. In fact, machine learning techniques (including
regression forests) are naturally designed for dealing with such variations in the
training data.

Problem Statement Given the definitions above, the goal of our algorithm is to
find a function 𝑤approx such that

𝑤opt ≈ 𝑤approx(𝜙), (5.9)

for given path features 𝜙 and two rendering algorithms 𝛼 and 𝛽 . This function𝑤approx

basically expresses the preference of the algorithm 𝛼 over the other algorithm 𝛽 for
paths with a feature vector of 𝜙. In order to learn 𝑤approx, we use a machine learning
algorithm called regression forests.
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Difference Between Multiple Importance Sampling Conceptually, our pro-
posed blending approach is similar to multiple importance sampling (MIS) [116].
MIS also combines two or more different estimators to improve the efficiency of the
combined estimator.

MIS combines multiple sampling strategies by decomposing the measurement
contribution function 𝑓 in Eq. 6.1 into a weighted sum of 𝑀 different weights. The
estimate of the pixel intensity 𝐼 by MIS can be written as

𝐼 = ∫
Ω

𝑀
∑
𝑡=1

𝑤𝑡(𝑥)𝑓 (𝑥)𝑑𝜇(𝑥) =
𝑀
∑
𝑡=1

∫
Ω
𝑤𝑡(𝑥)𝑓 (𝑥)𝑑𝜇(𝑥) (5.10)

≈
𝑀
∑
𝑡=1

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

𝑤𝑡(𝑥𝑡,𝑖)
𝑓 (𝑥𝑡,𝑖)
𝑝𝑡(𝑥𝑡,𝑖)

(5.11)

where 𝑝𝑖(𝑥) is the pdf of the 𝑖-th strategy, 𝑤𝑖(𝑥) is the weighting function satisfying
∑𝑀

𝑡=1 𝑤𝑖(𝑥) = 1 for all 𝑥 ∈ Ω with 𝑓 (𝑥) ≠ 0, and 𝑤𝑖(𝑥) = 0 for all 𝑥 ∈ Ω with 𝑝𝑖(𝑥) = 0.
In order to use MIS, however, we need to know the probability densities of path
sampling techniques for arbitrary sample locations. Such information can be difficult
to obtain without modifying an implementation or sometimes impossible due to the
formulation of each algorithm.

5.4 Regression Forests

The basic idea of regression forests is to use a set of binary trees for approximating
a multivariate function of the feature vector. This multivariate function expresses
the relationship between feature vectors and the corresponding value. Each binary
tree is called a regression tree where the inner nodes (split nodes) express branching
conditions on an input feature vector. Each regression tree takes an input feature
vector and outputs a value associated with the corresponding leaf node. Regression
forests return the average of the outputs of regression trees as the final output.

5.4.1 Construction

For the construction of regression forests, we need a large number of training sam-
ples which associate feature vectors (a set of path features) and output values (opti-
mal weights). We generate these samples by rendering several training scenes. We
then extract the path features and the corresponding optimal weights for each scene.
The regression forest is trained to approximate the optimal weights even for a new
scene, based only on the path features.

We define a training sample 𝑡 ≡ (𝜙𝑡 , 𝑤 𝑡
opt) ∈  as a tuple of path features 𝜙𝑡 and

the optimal weight 𝑤 𝑡
opt.  is a set of all training samples. The construction process

begins from the root node of the regression forest. Each step of the construction
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process recursively splits training samples into left and right nodes. We denote the
subset of the training samples in the currently processed node as 𝑇 ⊆  and we start
from 𝑇 =  . The algorithm is similar to a top-down construction of a kd-tree for ray
tracing [20, 43].

Node Splitting The construction process continues splitting the current node un-
til the number of training samples in the current set 𝑇 is smaller than a threshold, or
the depth of the tree has reached the maximum depth. If the recursion terminates,
the current node becomes a leaf node. Each leaf node stores the average over the set
of the optimal weights in this node as 𝑤leaf . This average weight approximates the
optimal weight at runtime.

If the recursion continues, we split the current set of samples 𝑇 into two disjoint
subsets 𝑇𝐿 and 𝑇𝑅 according to a threshold 𝜃 and an index 𝑘 of the path features:

𝑇𝐿(𝜃, 𝑘) = {𝑡 ∈ 𝑇 |𝜙𝑡(𝑘) ≥ 𝜃} (5.12)

𝑇𝑅(𝜃, 𝑘) = 𝑇 ⧵ 𝑇L(𝜃, 𝑘) (5.13)

where 𝜙𝑡(𝑘) is the 𝑘-th element of the path features 𝜙𝑡 . The threshold 𝜃 and the index
𝑘 at each step are defined as (𝜃, 𝑘) = argmax𝜃 ′,𝑘′ 𝑉 (𝜃 ′, 𝑘′, 𝑇 ), where 𝑉 (𝜃 ′, 𝑘′, 𝑇 ) =
Var(𝑇 ) − Var(𝑇𝐿(𝜃 ′, 𝑘′)) − Var(𝑇𝑅(𝜃 ′, 𝑘′)). Here Var(𝑇 ) is the variance of the optimal
weights in 𝑇 . The function 𝑉 is used to define the most discriminative pair of the
threshold 𝜃 and the index of the path feature 𝑘 according to the variance

5.4.2 Runtime

In our framework, we first render a given new scene with two different algorithms 𝐼𝛼
and 𝐼𝛽 with the same computation time. We also extract the path features 𝜙 accord-
ing to the definition by Equation 5.5. Using these path features, we can now evaluate
each trained regression tree by traversing down the tree according to the branching
condition defined in Equation 5.12, which eventually reaches a leaf node and the
weight 𝑤leaf is recorded in the leaf node. By repeating this process for all regres-
sion trees in the trained regression forest, we obtain a set of weights 𝑤leaf recorded
in the leaf nodes for each tree. We define 𝑤𝑟 (𝜙) as the output of the 𝑟-th tree in
the trained regression forest, given the path features 𝜙. The approximated optimal
weight 𝑤approx(𝜙) with 𝑀 trees is given as

𝑤approx(𝜙) =
1
𝑀

𝑀
∑
𝑟=1

𝑤𝑟 (𝜙). (5.14)

Blending at each pixel is 𝑤approx(𝜙)𝐼𝛼 + (1 − 𝑤approx(𝜙))𝐼𝛽 . This evaluation process is
repeated for all the pixels. The use of forests can alleviate the discontinuity of the
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resulting weights. Even if one tree suddenly returns a totally different value due to
hard classification, it is likely that other trees still return similar weights. As a result,
returning weights will be smoothly changing.

5.4.3 Refinement

A trained regression forest is sometimes too optimized for given training samples.
In order to reduce overfitting, we follow the refinement technique for regression
forests proposed by Ren et al. [93] and Ladický et al. [65]. The main idea is to split a
set of training samples into two subsets and use one for constructing the structure of
each tree while using the other for defining the outputs. After the construction step,
we first discard the values 𝑤leaf assigned to the leaf nodes while keeping the tree
structure. The refinement process then updates 𝑤leaf using the additional training
samples.

For each additional training sample 𝜙, we execute the evaluation of the tree until
the evaluation process reach to the leaf node. After collecting the set of training
samples Φ reached to the leaf node, the updated weight 𝑤∗

𝑟 can be computed as

𝑤∗
𝑟 =

1
|Φ|

∑
(𝜙,𝑤opt)∈Φ

𝑤opt(𝜙). (5.15)

We iterate this refinement process for each tree in the regression forest using the
sample training set for the refinement. Since the training samples are taken from
the different portion of the training set independent of the samples assigned for the
initial construction, the final weights associated to the leaf node could become more
generic, which alleviates overfitting to the initial training set.

5.5 Results

We selected the two combinations of the rendering algorithms to show the effec-
tiveness of our framework: (1) stochastic progressive photon mapping (SPPM) [32]
and Metropolis light transport (MLT) [117] with manifold exploration [52] shown in
Fig. 7.7, (2) SPPM and bidirectional path tracing (BDPT) [66, 115] shown in Fig. 5.3.
We chose these algorithms because both the algorithm and the performance are dis-
tinguishably different. One famous characteristic of SPPM is the ability to handle
specular-diffuse-specular paths efficiently. A caustic that can be seen through a wa-
ter surface is an example of such paths. MLT is based on Markov chain Monte Carlo
sampling which utilizes a sequence of correlated samples that forms aMarkov chain.
The sequence of the samples is generated such that the resulting sample distribution
follows an arbitrary user-defined target function such as the measurement contribu-
tion function. MLT is known to be effective for the scenes with complex occlu-
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Figure 5.2: Equal-time comparison (20 minutes) of the average and our automatic
blending of the images rendered by SPPM [32] and MLT [117] with manifold explo-
ration [52]. We highlighted three scenes with different characteristics from our test
cases (box, cryteck-sponza, and water). The top row shows the reference images.
The bottom two rows visualize errors, the optimal blending weights, and the out-
put blending weights of our framework. Depending on the types of lighting effects,
the optimal blending weights for SPPM and MLT that result in the minimal error
vary significantly. Simply taking the average of SPPM and MLT thus produces a
suboptimal result in terms of RMS error.

sion. BDPT can utilize various sampling technique by the combination of paths
traced from the sensor and the lights. These sampling techniques are combined
with multiple importance sampling [116]. The combination of SPPM and BDPT
would exhibit the good trade-off because BDPT is not efficient at handling specular-
diffuse-specular paths [61] and while being more efficient at rendering diffuse sur-
faces [36, 26].

For the implementations of rendering algorithms, we used theMitsuba renderer [51].
Mutation techniques used for MLT are bidirectional, lens, caustic, multi-chain, and
manifold perturbation [52]. All the images except for the reference images are ren-
dered on a machine with Intel Core i7-4720HQ at 2.6 GHz. The training phase is
computed with a machine with Intel Core i7-3970X at 3.5 GHz and 16 GB of main
memory. We utilized only a single core for rendering in order to alleviate the differ-
ence of performance between SPPM and MLT according to the parallelization. In
order to facilitate the future work, we publish our implementation on our website.

Training Samples Our training set consists of 10 scenes with various character-
istics in order to cover as many types of paths as possible. We render all the scenes
with each rendering algorithm for 5, 10, 15, and 20 minutes. Each scene is rendered
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Figure 5.3: Comparison of errors, the optimal weights and the approximations by
our framework for the combination of BDPT and SPPM. The selection of the scenes
and meaning of the images are same as Fig. 7.7. Similar to the combination of MLT
and SPPM, our framework generally captures the preference to the scene according
to the characteristics of the scenes, although some difference can be observed, e.g.,
preference to the scene dominated with specular material is weaker (box scene).

five times, in order to alleviate overfitting as discussed in Section 5.3.2. Given this
whole training data, we generate a regression forest for each scene by excluding the
scene from the training data. We thus have 10 different regression forests as a re-
sult. Each forest is tested against the corresponding scene that was excluded from
its training. It is essentially leave-one-out cross-validation in machine learning.

While it is possible to have a single forest for all the training scenes and test this
forest against the same set of scenes, we found that this kind of experiment is prone
to overfit to the training scenes. Our regression forest consists of five trees and the
maximum depth of each tree is 15. The construction time of the regression forest is
30 minutes.

Approximated Optimal Weights Fig. 5.4 shows blending weights and RMS er-
rors for selected five scenes with the combination of SPPM and MLT. Fig. 7.7 shows
such results with visualization of the error per pixel for three other scenes. We com-
pare approximated optimal weights via a trained regression forest with the average
of five different runs for each scene. The blending weight is fixed to 0.5 when a
pixel has no information on path features (e.g., background images). We blended
two images rendered by SPPM and MLT by taking the average (Average) or by us-
ing the approximated optimal weight per pixel (Proposed). The running time of our
framework is less than 50 msec for all the scenes. The storage cost of our regression
forest is 100 KB. Both the running time and the storage cost are independent of the
geometric complexity of the scenes. We can see that optimal weights and weights
suggested by our framework are very similar to each other in almost all the cases.
Our framework thus successfully learned the preference of an algorithm only based
on path features.
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Figure 5.4: Comparison of the optimal weights and the approximations by our frame-
work for the selected five scenes combining MLT and SPPM. The first row shows the
reference images. The bottom two rows visualize the optimal weights and the ap-
proximated weights via trained regression forests. For many scenes, our framework
largely reproduces the optimal weights, without any information other than rough
estimates of path features per pixel. The RMS errors between the blended images
and the references are improved compare to taking the average (Average). We also
show RMS errors for MLT and SPPM with the same total rendering time.

RMS Errors Fig. 5.5 shows RMS errors for 10 scenes for the combination of MLT
and SPPM. We plot RMS errors of MLT, SPPM, their average, and our blended result
for each scene with the total rendering time of 20 minutes for all the methods. The
plots are scaled such that the values for the average is one. We can observe that
our blending is superior to the average in all scenes. The reduction of error by our
blending is larger when the difference of RMS errors between SPPM and MLT is
large. Moreover, the blended solution by our framework sometimes outperforms a
better algorithm with the same total rendering time. Such a result is not trivial since
our framework spends only half of the total rendering time for each algorithm. We
should also note that just taking the average can in fact increase the error for the
same reason (e.g., Cornell scene). In contrast, we did not find any such cases using
our framework. This result supports that our framework can improve the robustness
of light transport simulation in practice.

Effect of TreeDepth The images in Fig. 5.6 show the approximated optimalweights
for the box scene with different depths of the regression trees in the runtime. As the
depth increases, we can observe that the preference to each technique becomes more
explicit. Yet another observation is that the approximated weights are converged
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Figure 5.5: Scaled RMS errors of MLT, SPPM, Average, and blending with our frame-
work over 10 scenes. All the methods use the total rendering time of 20 minutes.
The average and our blending spends 10 minutes for both MLT and SPPM, keeping
the total rendering time equal to 20 minutes. We scaled RMS errors such that the
average is always one. The scenes are sorted roughly according to the difference of
RMS errors between MLT and SPPM.

around the tree depth of 15. The graph in Fig. 5.6 shows the RMS error between the
optimal weight and the approximated weight with our framework for this scene. We
can observe that the RMS error converges around the depth of 15, and we found that
it is similar for the other scenes as well. Along with the saturation of the weights,
we thus conservatively set the tree depth to 15 in our experiments.

5.6 Discussion

5.6.1 Alternative to Blending

While we found that blending is a practical approach to combine different rendering
algorithms, it is tempting to try selecting one of the different algorithms instead of
blending such that we can spend all the allocated rendering time to one algorithm.
This alternative solution, however, is not feasible for two major reasons. Firstly, as
shown in Fig. 7.7, a better algorithm can change even within a single image. Even
though MLT looks converged in many regions, it can entirely miss certain lighting
effects such as specular reflections of caustics. As such, resolving all the effects by
a single algorithm can take a significant amount of rendering time as compared to
combining the results of two algorithms. Recent work on robust rendering algo-
rithms are based on the same observation [36, 26].

Secondly, defining useful features for this selection is not trivial and algorithm-
dependent. In order to select an efficient algorithm for a specific input scene, we
would need a feature vector of a whole configuration of the rendering process. This
information includes parameters of each rendering algorithm that affects the perfor-
mance, which in turn makes the whole framework algorithm-dependent. It is also
not obvious how to encode input scenes as feature vectors. Unlike images, which
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Figure 5.6: Visualization of approximated optimal weights for the box scene with
different tree depth (top) and the corresponding plot of the approximation errors
(bottom). The RMS errors of the blended images are shown under each image. As
the depth of the tree increases, the color indicating the preference to MLT becomes a
bit more explicit, but not significantly after a certain depth. The plot of the variance
shows how approximation errors of the optimal weights change according to the
tree depth, which also stops converging around the depth of 15.

contain a set of pixels in a structured manner, scene data contains a set of very dif-
ferent information such as material data, textures, and triangle meshes. There is no
single data structure common to all of data necessary to define input scenes. This
lack of a common structured input form is a striking differences to applications of
machine learning for images.

One might also consider finding a distribution of total rendering time, such that
we do not spend too much computation for an algorithm with small weights. This
deceivingly obvious improvement, however, is not possible since our regression for-
est is trained under the assumption that each algorithm spends the same rendering
time. Even if we can find such a distribution of rendering time somehow, optimal
blending weights are now different from those at the training phase since rendering
time for each algorithm is also different. To implement this idea, we would need to
have multiple regression forests for all the possible distributions of total rendering
time, which is likely infeasible.

5.6.2 Comparison to Neural Networks

We used regression forests as a machine learning technique to learn the relationship
between path features and the optimal blending weights. One possible option is to
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Figure 5.7: Approximated blending weights (top) and the relative errors (bottom)
for the selected three scenes (box, crytek-sponza, and water) by replacing regression
forests via a neural network.

replace it by neural networks. Given its success in the computer vision community,
a deep neural network [49] is a possible candidate. We tested replacing regression
forests by a fully-connected four layer’s neural network using Caffe [56] on GPU as
additional experiments. As shown in Fig. 5.7, we found that a neural network can
achieve similar performance to regression forests. We discarded this approach in
the end since even its running time is multiple orders of magnitudes slower (three
minutes) than regression forests (60 msec) without much improvement in terms of
RMS errors.

5.6.3 Limitations

Preparing Training Scenes In general, a machine learning technique needs a
large number of training samples to avoid overfitting. While we carefully designed
a set of training scenes, it is not guaranteed that the prepared training scenes are
indeed sufficient for learning. This situation is in contrast to the computer vision
community; there are several standardized large datasets such as ImageNet [94].
Although we used some standard models and scenes often seen in other rendering
research, it would be interesting as future work to generate training scenes based on
procedural modeling. This procedural modeling should include not only shapes, but
also materials, lighting, and camera parameters.

Dependency on Training Scenes We found that our method works especially
well if there are only slight differences between training scenes and test scenes.
Fig. 5.8 shows the torus2 scene which uses the same geometry and materials as the
torus scene in Figure 7.7, but with a slightly different camera configuration and an
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Figure 5.8: RMS errors for a test scene that is only slightly different from a training
scene. This test scene is made by changing the environment light and the camera
configuration while retaining the geometry and materials of the torus scene in Fig-
ure 7.7. For this experiment, we used the original torus scene for training, and the
modified torus scene at runtime.

environment map. For this experiment, we used only the torus scene for the training
phase, and rendered the torus2 scene. We can observe that reduction of RMS error
is significant in this case. This experiment indicates an interesting use case of our
framework in practice: when an artist is modeling a new scene based on existing
ones, we can train a regression forest with existing scenes beforehand.

5.7 Related Work

Light Transport Simulation in Rendering Since the development of path trac-
ing [58], the number of light transport simulation algorithms have been developed.
Among many rendering algorithms, we used the two representative approaches in
our tests: SPPM [32] and MLT [117] with manifold exploration [52]. We chose these
two approaches because their algorithms are completely different and have different
characteristics as rendering algorithms. SPPM works by tracing a number of light
paths and estimates density of light path vertices at a visible point through each
pixel. MLT on the other hand traces a whole path by a Markov chain from the pre-
viously generated path and estimates the histogram of this Markov chain at all the
pixels. SPPM is generally considered good at rendering caustics, while MLT is con-
sidered efficient at resolving complex visibilities from light sources. Our framework
however is not restricted to use very different algorithms, since it is independent of
how each algorithm works internally.

Machine Learning in Rendering Several researchers have already applied ma-
chine learning to rendering. One popular application of machine learning in ren-
dering is regression models. Among others, Jacob et al. [53] utilized unsupervised
online-learning of a Gaussian mixture model (GMM) to represent a radiance distri-
bution in participating media. Vorba et al. [118] also used online learning of GMM
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to represent probability density functions for importance sampling. Ren et al. [92]
introduced a realtime rendering algorithm using non-linear regression to represent
precomputed radiance data. The precomputed radiance data is modeled as a multi-
layered neural network [46]. The idea is to learn the relationship between scene con-
figurations and the resulting radiance distribution based on off-line rendering with
random attributes. While we also use machine learning for regression, we propose
to use machine learning to combine existing rendering algorithms without any mod-
ification to them. Our framework thus can be applied on top of any of the previous
workmentioned above. More recently, Nalbach et al. [80] showed how to use CNN to
approximate screen-space shaders. While the goal of their work is completely differ-
ent from ours, their work demonstrate the powerful potential of applying machine
learning to rendering.

Kalantari et al. [59] recently proposed a image filtering technique to reduceMonte
Carlo rendering noise based on the multilayer perception [46]. The idea is to learn
the relationship between the scene features such as a shading location or texture
values and a set of filtering parameters. Our work is inspired by their successful
application and we also use machine learning to find the relationship between path
features and the optimal blending weights. The difference is that their work focuses
to improve the result of a single image by filtering, while we consider a situation
where there are multiple rendering algorithms available for a user.

The aim of our work is to use machine learning to blend the results of different
rendering algorithms. Such blending is often done by multiple importance sam-
pling [116], and there have been many recent works on this approach [36, 26]. Our
work differs from multiple importance sampling in that we treat each rendering al-
gorithm as a black-box and does not require any detailed algorithmic information
such as path probability densities.

Regression Forests Regression forests [10] are actively used in many applica-
tions. One famous example is Kinect body segmentation [99]. By simply fetching
neighboring depth values and parse the regression forest, this algorithm can label
each pixel by 31 different body parts quite accurately in realtime. For face recog-
nition, Ren et al. [93] showed that regression forests can be used to detect major
features such as eyes, a mouth, and a nose. Tang et al. [108] used regression forests
to extract a skeletal hand model from an RGB-depth image.

For applications in computer graphics, Ladický et al. [65] used regression forest
for fluid simulation and achieved x200 speed up. They trained a regression forest
via position-based fluid simulation by defining several features around each particle.
The trained regression forest is used to update the state of particles at the next time
step, without relying on costly simulation. Inspired by the success of regression
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forests in many applications, we also utilize regression forests instead of a more
popular convolution neural network [49]. As far as we know, our work is the first
application of regression forests in rendering.

5.8 Summary

We presented a framework to automatically blend results of different light transport
simulation algorithms. The key idea is to learn the relationship between a class
of light transport paths and the performance of each algorithm on each class. For
classification of paths, we introduced a feature vector based on relative contributions
from different types of paths according to Heckbert’s notation. We then calculate
optimal blending weights such that a resulting image has minimal errors on average
after blending. Using regression forests, we approximate a function that takes a
feature vector of light transport paths and outputs the optimal blending weight per
pixel. The resulting framework is independent from how each algorithm works,
which makes it easily applicable to different rendering algorithms.
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Chapter 6

Bridging State Spaces of Markov Chain
Monte Carlo Rendering

6.1 Introduction

Physically-based rendering with light transport simulation is widely used nowa-
days. One class of simulation algorithms is based on Markov chain Monte Carlo
(MCMC) [114]. MCMC rendering generates a Markov chain of light transport paths
to follow an arbitrary user-defined target distribution. This target distribution is
defined according to the contributions of light transport paths to the image, which
allows MCMC algorithms to efficiently focus computation on contributing paths. In
rendering, a technique for proposing the next state of a Markov chain is typically
called a mutation strategy. Recent work has proposed a variety of sophisticated mu-
tation strategies [52, 60, 33, 69].

The MCMC rendering algorithms use either the path space [114] or the primary
sample space [62] as the state space of a Markov chain. The path space defines a path
by a sequence of vertices, and the algorithms mutate a path by directly modifying its
vertices. The primary sample space instead defines a path by a sequence of numbers
used to generate the path, and indirectly mutates a path by modifying the corre-
sponding sequence of numbers. This sequence corresponds to numbers generated
by a pseudo-random number generator in regular Monte Carlo path samplers, and
can be mapped to a path by path tracing [58] or bidirectional path tracing [67, 113]
for example. Due to this fundamental difference between the two state spaces, a
mutation strategy for one space is not applicable to the other space. For example, it
is impossible to use manifold exploration [52] in the primary sample space as it is
designed to work on path vertices in the path space. This situation prohibits us to
take full advantage of all the advanced mutation strategies within a single rendering
algorithm.

We propose a framework to fuse the different state spaces in MCMC rendering
for the first time. The main idea is the use of an inverse path sampler which acts
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as the inverse operation of a regular path sampler. The inverse path sampler takes
a complete path as input and maps it to a corresponding sequence of numbers in a
unit hypercube. Since this mapping uses the inverse of the inverse cumulative dis-
tribution functions (CDFs) used in importance sampling, it requires just the CDFs
themselves which are often readily available. Our formulation does not impose any
modification to mutation strategies themselves, making it easy to use it with existing
implementations. We tested our formulation for the combination of manifold explo-
ration [52] and multiplexed Metropolis light transport [33]. The results demonstrate
that this combination robustly handles scenes with different characteristics where
using only one of the algorithms fails. To summarize, our contributions are:

∙ A novel framework which fuses the two state spaces currently used for Markov
chain Monte Carlo rendering,

∙ Introduction of the concept of an inverse path sampler,

∙ Demonstration of MCMC rendering with a combination of mutation strategies
mixing both state spaces.

6.2 Related Work

Light Transport Simulation Rendering algorithms based on Monte Carlo inte-
gration are primarily characterized by how they generate paths connecting a light
source to a sensor. Path tracing [58] generates a path starting from the sensor, light
tracing [5] traces from a light source, and bidirectional path tracing [67, 113] from
both sides with deterministic connections of subpaths.

Another family of approaches is based on photon density estimation [98], such as
(progressive) photon mapping [55, 35], which estimates illumination using the den-
sity of light subpath vertices. Recent work [26, 36] combinesMonte Carlo integration
and photon density estimation into a single rendering algorithm.

We employ existing Monte Carlo integration approaches as path samplers, which
can generate a light transport path from a sequence of numbers. A path sampler in
our formulation can be any of the existing approaches as long as they are based on
the path integral formulation [112]. We introduce the inverse of such a path sampler
and show how it can be used in Markov chain Monte Carlo (MCMC) rendering with
fused state spaces.

MCMC in Path Space Veach and Guibas [114] introduced Markov chain Monte
Carlo methods to rendering. The resulting algorithm, Metropolis Light Transport
(MLT), perturbs the vertices of a path and generates a history of paths based on the
Metropolis-Hastings algorithm. Since MLT directly manipulates vertices, it works
within the path space of the path integral formulation.
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Manifold exploration [52] is also built on the original MLT framework and ex-
tends its mutation strategy to efficiently handle a chain of specular and highly glossy
events. Half vector space light transport [60, 39] represents paths by their endpoints
and half vectors at the interactions between them. This representation has been
shown to flatten the target sampling distribution, which makes it easier to sample
by Markov chain Monte Carlo algorithms.

Path space algorithms are often efficient at rendering certain effects since we can
explicitly consider characteristics of such effects in mutations (e.g., caustics in the
caustic mutation [114]). We show how to incorporate such efficient mutations into
the other class of MCMC rendering algorithms.

MCMC in Primary Sample Space Kelemen et al. [62] introduced an alternative
formulation of MLT based on the primary sample space. The algorithm, primary
sample space MLT (PSSMLT), indirectly mutates paths by perturbing a vector of
(random) numbers that is used to generate paths. They showed how this formula-
tion significantly simplifies the MCMC process and flattens the target distribution
by utilizing the information of the probability density function of a given path sam-
pler. Li et al. [69] showed how to achieve locally adaptive anisotropic mutations in
the primary sample space based on the approximation of Hessian-Hamiltonian dy-
namics. The resulting algorithm demonstrates robust sampling even in the presence
of complex light transport paths.

If PSSMLT is used with bidirectional path tracing as a path sampler, it generates
a family of bidirectional paths, rather than a single path such as MLT. This difference
makes the connection between the primary sample space and the path space ambigu-
ous since one sample in the primary sample space corresponds to a family of paths.
Hachisuka et al. [33] showed that this ambiguity can be resolved simply by extend-
ing the primary sample space by another dimension, encoding the type of the used
bidirectional technique. They showed how this multiplexed primary sample space
leads to a method that can distribute samples based on the weighted primary sample
spaces according to multiple importance sampling [113]. We show how to combine
the path space MLT techniques and the primary sample space MLT techniques for
the first time.

Bridging Sampling Spaces The half vector space [60] can be considered as yet
another space and one possibility to bridge the half vector space and the path space.
We instead consider bridging the primary sample space and the path space. Con-
current works [87, 9] also use an inverse mapping from the primary sample space
to the path space. Although their methods are different from ours, the underlying
concept is equivalent.
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6.3 State Spaces of MCMC Rendering

This section briefly introduces the path space and primary sample space variants
of MLT. We also recapitulate the multiplexed primary space, as it has beneficial
properties that lead to our framework.

6.3.1 Path Space

Light transport simulation computes the solution of the path integral [112]. It deter-
mines the intensity of the 𝑗-th pixel in the image as the integral over themeasurement
contribution function 𝑓𝑗(𝑥) with respect to the product area measure 𝜇:

𝐼𝑗 = ∫ 𝑓𝑗(𝑥)𝑑𝜇(𝑥), (6.1)

where  is the path space which comprises all paths of all possible lengths ( ≡
∪∞𝑘=2𝑘) and 𝑘 denotes a sub-space containing paths with 𝑘 = [2,… ,∞) vertices.
An individual path 𝑥 ≡ (𝐱1,… , 𝐱𝑘) ∈ 𝑘 is defined as a sequence of points on the
scene’s surfaces. Note that we do not consider participating media in this work.

MLT [114] uses theMetropolis-Hastings algorithm [42] to sample paths: the path
space  serves as the state space and MLT generates a sequence of samples that fol-
low 𝑓 ∗/𝑏 as the target distribution. Here 𝑓 ∗ is a scalar contribution function (typically
luminance) proportional to the measurement contribution 𝑓 , and 𝑏 ≡ ∫ 𝑓 ∗(𝑥)𝑑𝜇(𝑥) is
the normalization constant, which is estimatedwith regularMonte Carlo techniques.
Using this sequence of samples, the estimate 𝐼𝑗 becomes

𝐼𝑗 ≈ 𝐼𝑗 ≡
𝑏
𝑁

𝑁
∑
𝑖=1

𝑓 (𝑥𝑖)
𝑓 ∗(𝑥𝑖)

. (6.2)

A tentative sample �̄� is generated based on the current path 𝑥𝑖 ∈  and according
to the transition kernel 𝑇 , i.e., �̄� ∼ 𝑇 (𝑥𝑖 → ⋅). For a Metropolis-Hastings up-
date, the path �̄� is accepted as the next state 𝑥𝑖+1 with an acceptance probability of
min (1, 𝑎(𝑥𝑖 → �̄�)) where

𝑎(𝑥𝑖 → �̄�) =
𝑓 ∗(�̄�)𝑇 (�̄� → 𝑥𝑖)
𝑓 ∗(𝑥𝑖)𝑇 (𝑥𝑖 → �̄�)

. (6.3)

Otherwise 𝑥𝑖 is kept as the current state (𝑥𝑖+1 = 𝑥𝑖).

6.3.2 Primary Sample Space

PSSMLT [62] simplified the original MLT algorithm by using the space of uniform
random numbers as the state space, based on the observation that paths are sampled
by a sequence of random numbers (Fig. 6.1, left). This state space is denoted as the
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Figure 6.1: Relationship between the path space and the primary sample space (left),
and the multiplexed primary sample space (right). For primary sample space, the
random number �̄� is mapped to the path 𝑥 using the inverse cumulative distribution
function 𝑃−1. Multiplexed primary sample space extends the primary sample space
by the index of the sampling strategy 𝑡 corresponding to the strategy of the bidirec-
tional path samplers. In this example, a path with length three is mapped from �̄�
with path connection between the second and third vertices (𝑡 = 2).

primary sample space, described as the unit hypercube  = [0, 1]𝑂(𝑘) (𝑂(𝑘) random
numbers are normally required to define a path of length 𝑘).

The relationship between a sample in the state space �̄� ∈  and a path 𝑥 ∈ 
can be written as the inverse of the cumulative distribution function 𝑃−1 ∶  →  .
The actual mapping of �̄� to a path 𝑃−1(�̄�) is obtained by using the underlying path
sampler and using the random number sequence �̄�. With 𝑃−1 Eq. 6.1 can be rewritten
as

𝐼 = ∫ 𝑓 (�̄�)
||||
𝑑𝜇(𝑥)
𝑑�̄�

||||
𝑑�̄� = ∫ 𝑓 (�̄�)

||||
𝑑𝑃−1(�̄�)
𝑑�̄�

||||
𝑑�̄� = ∫ �̃�(�̄�)𝑑�̄�, (6.4)

where �̃� is the path throughput in primary sample space. We use the tilde to explic-
itly express the dependence on random numbers �̄� instead of the path space vertices
𝑥 , i.e., �̃�(�̄�) = 𝐶(𝑃−1(�̄�)) = 𝐶(𝑥), where 𝐶(𝑥) = 𝑓 (𝑥)/𝑝(𝑥) is the path contribution in
path space.

Now using an appropriate scalar target function �̃� ∗(�̄�𝑖) (the luminance of �̃�(�̄�)),
MCMC can generate a sequence of samples distributed according to �̃�(�̄�). That is,
using a Markov chain �̄�𝑖 ∈  with 𝑁 samples, we can compute an estimate ⟨𝐼⟩ of 𝐼
(Eq. 6.4) as

⟨𝐼⟩ =
1
𝑁

𝑁
∑
𝑖=1

�̃�(�̄�𝑖)
�̃� ∗(�̄�𝑖)/𝑏

=
𝑏
𝑁

𝑁
∑
𝑖=1

�̃�(�̄�𝑖)
�̃� ∗(�̄�𝑖)

, (6.5)

where 𝑏 = ∫ �̃� ∗(�̄�)𝑑�̄� is the normalization constant, which again is estimated with
regular Monte Carlo techniques.

PSSMLT also uses theMetropolis-Hasting algorithm to generate the next sample.
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Given a current state �̄�𝑖 , we first generate the next tentative state �̄� from the proposal
distribution 𝑞, i.e., �̄� ∼ 𝑇 (�̄�𝑖 → �̄�), which is accepted as �̄�𝑖+1 with the probability:

𝑎(�̄�𝑖 → �̄�) =
�̃� ∗(�̄�)𝑇 (�̄� → �̄�𝑖)
�̃� ∗(�̄�𝑖)𝑇 (�̄�𝑖 → �̄�)

, (6.6)

and �̄�𝑖+1 = �̄�𝑖 otherwise. A symmetric proposal distribution avoids the computation
of the transition probabilities and Eq. 6.6 becomes

𝑎(�̄�𝑖 → �̄�) =
�̃� ∗(�̄�)
�̃� ∗(�̄�𝑖)

. (6.7)

In general, there is no one-to-one mapping between primary space and a path
since one primary space sample can be mapped to a set of paths (e.g., with bidirec-
tional path tracing).

Multiplexed Primary Sample Space Hachisuka et al. [33] extended the formu-
lation of PSSMLT to facilitate multiple importance sampling (MIS) [113] within this
framework (Fig. 6.1, right). MIS combines multiple sampling strategies 𝑝𝑡(𝑥)𝑡=1,…,𝑀
into an estimate 𝐼 :

𝐼 = ∫
𝑀
∑
𝑡=1

𝑤𝑡(𝑥)𝑓 (𝑥)𝑑𝜇(𝑥) =
𝑀
∑
𝑡=1

∫ 𝑤𝑡(𝑥)𝑓 (𝑥)𝑑𝜇(𝑥) (6.8)

≈
𝑀
∑
𝑡=1

1
𝑁𝑡

𝑁𝑡

∑
𝑖=1

𝑤𝑡(𝑥𝑡,𝑖)𝐶𝑡(𝑥𝑡,𝑖), (6.9)

where 𝑀 is the number of techniques and 𝑤𝑡(𝑥) are the MIS weights satisfying
∑𝑀

𝑡=1 𝑤𝑡(𝑥) = 1, and 𝐶𝑡(𝑥𝑡,𝑖) = 𝑓 (𝑥𝑖)/𝑝𝑡(𝑥) is the throughput of the path 𝑥𝑖 generated
with a technique 𝑡 .

Given the sampling technique 𝑡 , we can write the relationship between �̄� and 𝑥
with the mapping 𝑃−1

𝑡 associated with the technique 𝑡 . Similar to PSSMLT, Eq. 6.8
can be written using this mapping as:

𝐼 =
𝑀
∑
𝑡=1

∫ �̃�𝑡(�̄�)𝑓 (�̄�)
||||
𝑑𝑃−1

𝑡 (�̄�)
𝑑�̄�

||||
𝑑𝜇(�̄�)

=
𝑀
∑
𝑡=1

∫ �̃�𝑡(�̄�)�̃�𝑡(�̄�)𝑑𝜇(�̄�) = ∫
𝑀
∑
𝑡=1

�̃�𝑡(�̄�)�̃�𝑡(�̄�)𝑑𝜇(�̄�).
(6.10)

Instead of using  for each 𝑡 as a state space, MMLT utilizes an extended space
named multiplexed primary sample space  ×  where  = {1,… , 𝑀}, facilitating
the idea of serial tempering [74]. This method explores the state spaces  param-
eterized by the parameter 𝑡 , and also facilitates Markov chain updates between the
two different parameters 𝑡 and �̄�. Using this method, we can sample the states ac-
cording to∑𝑀

𝑡=1 �̃�𝑡(�̄�)�̃�𝑡(�̄�) and estimate the last expression in Eq. 6.10 using a single
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Markov chain.
The Metropolis-Hasting update for MMLT considers two types of mutations: (1)

a mutation within the same technique, and (2) a mutation among the different tech-
niques. Both types of mutations can be considered in a single update with the accep-
tance ratio min (1, 𝑎([�̄�, 𝑡] → [�̄�, 𝑡 ′])) using

𝑎([�̄�, 𝑡] → [�̄�, 𝑡 ′]) =
�̃�𝑡′(�̄�)�̃�𝑡′(�̄�)𝑇 ([�̄�, 𝑡 ′] → [�̄�, 𝑡])
�̃�𝑡(�̄�)�̃�𝑡(�̄�)𝑇 ([�̄�, 𝑡] → [�̄�, 𝑡 ′])

. (6.11)

6.3.3 Discussion

MLT based on the path space is good for local explorations, as it can selectively re-
create parts of a path. PSSMLT variants usually need to re-trace all path segments
after updating the random numbers.

On the other hand, path space MLT has problems with global discovery of im-
portant “islands” in path space. This is because the only mutation strategy designed
to fulfill ergodicity, the bidirectional mutation, needs to fix the number of eye and
light subpath vertices upfront. This is required to be able to evaluate the transition
kernel 𝑇 (𝑥𝑖 → .), and often leads to very low acceptance rates.

This a-priori decision for one particular technique is similar in spirit to MMLT,
but MMLT also performs a local exploration of the state space. The MMLT formula-
tion has one more property which is important to us: we are able to give a mapping
from random numbers to path vertices.

6.4 Fusing the State Spaces

Our goal is to enable the use of mutation strategies from different state spaces, in
particular from the (multiplexed) primary sample space and the path space as in
MLT, in a single framework. We explain how to incorporate path space mutations
into MMLT by introducing the concept of an inverse path sampler.

6.4.1 Paths to Numbers

An inverse path sampler returns a sequence of numbers �̄� from a given path 𝑥 . While
such a mapping cannot be uniquely determined in PSSMLT with the BDPT sampler,
the multiplexed primary sample space leads to a straightforward derivation as fol-
lows.

Revisiting Path Samplers In order to find such an inverse mapping, we need to
revisit the precise meaning of a path sampler 𝑃−1

𝑡 (�̄�) = 𝑥 . In general, one can factorize
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Figure 6.2: Illustration of path sampling. A sequence of numbers �̄� = (𝐮1, 𝐮2, ...) is
successively transformed by inverse CDFs 𝑃−1

𝑡 . This process creates the path ver-
tices 𝐱1, 𝐱2, ... one after the other, depending on the chosen technique 𝑡 and the path
vertices that have already been sampled so far.

a multivariate CDF 𝑃𝑡(𝑥) = 𝑃𝑡(𝐱1,⋯ , 𝐱𝑘) into a product of conditional CDFs:

𝑃𝑡(𝐱1,⋯ , 𝐱𝑘) =

𝑃𝑡(𝐱1)𝑃𝑡(𝐱2|𝐱1)⋯ 𝑃𝑡(𝐱𝑘 |𝐱1,⋯ , 𝐱𝑘−1),
(6.12)

where 𝑃𝑡(𝐱𝑘 |𝐱1,⋯ , 𝐱𝑘−1) is a CDF of 𝐱𝑘 given 𝐱1,⋯ , 𝐱𝑘−1. Since all the conditional
CDFs are different CDFs, 𝑃𝑡(𝐱2|𝐱1) strictly should be written as 𝑃𝑡,𝐱1(𝐱2|𝐱1) for exam-
ple. We use the notation 𝑃𝑡(𝐱2|𝐱1) throughout this paper for brevity.

Using this factorization, the multivariate variant of inverse transform sampling
generates (𝐱1,⋯ , 𝐱𝑘) ∼ 𝑝𝑡(𝐱1,⋯ , 𝐱𝑘) by a sequence of inverse transform sampling (see
Fig. 6.2):

𝐱1 = 𝑃−1
𝑡 (𝐮1)

𝐱2 = 𝑃−1
𝑡 (𝐮2|𝐱1)

⋯

𝐱𝑘 = 𝑃−1
𝑡 (𝐮𝑘 |𝐱1,⋯ , 𝐱𝑘−1).

(6.13)

This factorization approach, in general, is not very practical since an analytical form
of the inverse of a conditional CDF is not often available. In typical Monte Carlo
rendering systems, however, we can rely on this exact approach by generating each
vertex 𝐱𝑖 based on the previous vertices 𝐱𝑖−1,⋯ , 𝐱1 (usually only on 𝐱𝑖−1 and 𝐱𝑖−2)
according to a PDF proportional to the BRDF at 𝐱𝑖−1.

This approach is often denoted as 𝑃−1
𝑡 (�̄�) = 𝑥 , but it is not precise. The exact

meaning of 𝑃−1
𝑡 (�̄�) = 𝑥 is the above sequential approach. We folded common cases

where we need to use multiple numbers to sample a vertex in each CDF for the sake
of brevity, but one can generally also factorize them into conditional univariate CDFs
similar to above.
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Figure 6.3: Illustration of inverse path sampling. Analogous to creating a path from
random numbers (Fig. 6.2), we can invert the process and successively compute ran-
dom numbers which would have created the given path via path sampling. This is
possible if the CDFs to create the vertices are bijections.

Inverse Path Samplers This precise definition leads to the following inverse sam-
pler from 𝑥 to �̄� = (𝐮1,⋯ , 𝐮𝑘) (see Fig. 6.3):

𝑃𝑡(𝐱1) = 𝐮1

𝑃𝑡(𝐱2|𝐱1) = 𝐮2

⋯

𝑃𝑡(𝐱𝑘 |𝐱1,⋯ , 𝐱𝑘−1) = 𝐮𝑘 .

(6.14)

We assume that each CDF is already available and can be evaluated easily. This
assumption holds in practice since we usually define the CDF first in order to derive
its inverse in path samplers. Note that the technique index 𝑡 is unaffected due to the
use of the multiplexed primary sample space.

While the definition of inverse path samplers might look trivial after the fact,
such CDFs have not been used for practical purposes in rendering so far. Our work
shows that they can be used for fusing the state spaces in MCMC rendering. We
provide some examples of CDFs and how they can be trivially defined.

6.4.2 Examples of Inverse Path Samplers

Example 1: Cosine distribution The cosine distribution is used to sample a di-
rection according to the cosine of the angle from the surface normal. Since there
are multiple algorithms to sample such a direction, we provide an example based on
Malley’s method [71]. The method uses the polar coordinates (𝑟 , 𝜃) of the projected
direction onto the tangent plane around the normal. The PDF of the cosine distribu-
tion in this case is 𝑝(𝑟 , 𝜃) = 𝑟/𝜋 , so the marginal and conditional densities for 𝑟 and
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𝜃 are
𝑝(𝑟) = ∫

2𝜋

0
𝑝(𝑟 , 𝜃)𝑑𝜃 = 2𝑟 𝑝(𝜃 |𝑟) =

𝑝(𝑟 , 𝜃)
𝑝(𝑟)

=
1
2𝜋

. (6.15)

The mapping from (𝑟 , 𝜃) to (𝑢1, 𝑢2) is

𝑢1 = 𝑃 (𝑟) = ∫
𝑟

0
𝑝(𝑟)𝑑𝑟 = 𝑟2,

𝑢2 = 𝑃 (𝜃 |𝑟) = ∫
𝜃

0
𝑝(𝜃 |𝑟)𝑑𝜃 =

𝜃
2𝜋

,
(6.16)

Example 2: Uniform sampling on a triangle Uniform sampling on a triangle
is often used to generate an initial vertex of a light path. Similar to the previous
example, we sample a point in different coordinates and convert to the surface point.
Typically, we transform to the barycentric coordinates of the isosceles right triangle
for this purpose. Given a point with barycentric coordinates (𝑏1, 𝑏2), the mapping
from (𝑏1, 𝑏2) to (𝑢1, 𝑢2) is

𝑢1 = 𝑃 (𝑏1) = ∫
𝑏1

0
𝑝(𝑏1)𝑑𝑏1 = 2𝑏1 − 𝑏21 ,

𝑢2 = 𝑃 (𝑏2|𝑏1) = ∫
𝑏2

0
𝑝(𝑏2|𝑏1)𝑑𝑏2 =

𝑏2
1 − 𝑏1

.
(6.17)

Example 3: Tabulated PDF In some cases, such as sampling a direction according
to an environment map, we generate samples according to a tabulated PDF. Such a
tabulated PDF 𝑝(𝑥) can be defined as a piecewise-constant function with 𝑁 bins over
[𝑥0, 𝑥𝑁 ]:

𝑝(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

𝑝𝑗 𝑥 ∈ [𝑥0, 𝑥𝑁 ]

0 otherwise
, (6.18)

where 𝑗 = ⌊𝑁 𝑥−𝑥0
𝑥𝑁 −𝑥0

⌋ + 1. We consider a one dimensional CDF for simplicity. The CDF
in this case becomes a piecewise-linear function, and the mapping from 𝑥 to 𝑢 is

𝑢 = 𝑃 (𝑥) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑃𝑗 + 𝑝𝑗𝑁 (𝑥 − 𝑗−1
𝑁 ) 𝑥 ∈ [𝑥0, 𝑥𝑁 ]

0 𝑥 ∈ 𝑥 < 𝑥0

1 𝑥 ∈ 𝑥 > 𝑥𝑁

, (6.19)

where 𝑃𝑗 = ∑𝑗−1
𝑘=1

𝑝𝑘
𝑁 . The summation for 𝑃𝑗 can be accelerated by precomputing 𝑃𝑗

and finding a bin index using binary search.

Example 4: GGX distribution There are various microfacet normal distributions
and the shape of the distributions can be complex. The distributions, however, are
well designed to make it possible to derive CDFs for importance sampling. The GGX
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Figure 6.4: We perform path space mutations by first converting the Markov chain
state from our base space (multiplexed primary sample space) to path space. This
is done using the standard Monte Carlo path sampler, applying 𝑃−1

𝑡 to the random
number sequence. We then mutate the state in path space via 𝑇 as regular MLT
does, without any modifications. Lastly, we convert the resulting path back to the
base state space by inverting the path sampling process and applying 𝑃𝑡 to the path
to compute the random number sequence.

distribution [120] controls the width of the distribution with a parameter 𝛼 . The PDF
in spherical coordinates (𝜃, 𝜙) is

𝑝(𝜃, 𝜙) =
𝛼2 sin 𝜃

𝜋 cos3 𝜃(𝛼2 + tan2 𝜃)2
. (6.20)

Following similar steps as previous examples, we obtain the marginal and condi-
tional CDFs for 𝜃 and 𝜙, and the mapping from (𝜃, 𝜙) to 𝐮 = (𝑢1, 𝑢2) is

𝑢1 = 𝑃 (𝜃) = ∫
𝜃

0
𝑝(𝜃, 𝜙)𝑑𝜃 =

tan2 𝜃
𝛼2 + tan2 𝜃

,

𝑢2 = 𝑃 (𝜙|𝜃) = ∫
𝜙

0
𝑝(𝜙|𝜃)𝑑𝜙 =

𝜙
2𝜋

.
(6.21)

6.4.3 Fusing State Spaces with Inverse Path Samplers

With the definition of inverse path samplers, we now have a mapping between the
path space  and the primary sample space  for simple unidirectional samplers.
Since we keep the technique 𝑡 fixed up front, we can now also formulate a mapping
between the two state spaces. In the following we consider paths with equal lengths
since the change of path lengths would complicate the inverse mapping. Similar
to the implementation of MMLT by Hachisuka et al. [33], we use a separate Markov
chain for each path length. In the following discussion, we opt to use the multiplexed
primary sample space as the base space since we found that it naturally incorporates
our formulation.

Fig. 6.4 illustrates this process: in order to perform a mutation in the path space,
we first map the current state (�̄�, 𝑡) to a path 𝑥 = 𝑃−1

𝑡 (�̄�) using the current sampling
strategy 𝑡 and the path sampler. We then apply a mutation and obtain the new path
�̄� ∈  according to 𝑇 (𝑥 → �̄�). Using the inverse path sampler, we convert it back to
 with �̄� = 𝑃𝑡(�̄�). The transition kernel in the path space 𝑇 (𝑥 → �̄�) is transformed
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to

𝑇 (𝑥 → �̄�) = 𝑇 ,𝑡(�̄� → �̄�)
||||
𝑑𝑃−1

𝑡 (�̄�)
𝑑�̄�

||||
, (6.22)

where 𝑇 ,𝑡(�̄� → �̄�) = 𝑇 (𝑃−1
𝑡 (�̄�) → 𝑃−1

𝑡 (�̄�)). The acceptance ratio for the mapped
paths then becomes

𝑎([�̄�, 𝑡] → [�̄�, 𝑡]) =
�̃�𝑡(�̄�)�̃�𝑡(�̄�)𝑇 ,𝑡(�̄� → �̄�) |||

𝑑𝑃−1
𝑡 (�̄�)
𝑑�̄�

|||
�̃�𝑡(�̄�)�̃�𝑡(�̄�)𝑇 ,𝑡(�̄� → �̄�) |||

𝑑𝑃−1
𝑡 (�̄�)
𝑑�̄�

|||
, (6.23)

where ||𝑑𝑃
−1(�̄�)/𝑑�̄�|| = 1/𝑝(�̄�) and ||𝑑𝑃

−1(�̄�)/𝑑�̄�|| = 1/𝑝(�̄�) by the definition of CDFs.
Eq. 6.23 is in fact equal to

𝑎([�̄�, 𝑡] → [�̄�, 𝑡]) =
�̃�𝑡(�̄�)𝑓 (�̄�)𝑇 ,𝑡(�̂� → �̂�)
�̃�𝑡(�̄�)𝑓 (�̄�)𝑇 ,𝑡(�̂� → �̂�)

(6.24)

since we have

�̃�𝑡(�̄�)
||||
𝑑𝑃−1(�̄�)
𝑑�̄�

||||
=
�̃�𝑡(�̄�)
𝑝(�̄�)

=
𝑓 (�̄�)

𝑝(�̄�)𝑝(�̄�)
(6.25)

�̃�𝑡(�̄�)
||||
𝑑𝑃−1(�̄�)
𝑑�̄�

||||
=
�̃�𝑡(�̄�)
𝑝(�̄�)

=
𝑓 (�̄�)

𝑝(�̄�)𝑝(�̄�)
. (6.26)

We thus do not need to modify existing implementations of mutation strategies in
order to use them in conjunction with another space.

6.4.4 Handling Deterministic Cases

Deterministic distributions such as perfect reflectors become a PDFwith a delta func-
tion. We cannot uniquely determine the inverse mapping in this case, since no com-
ponent of �̄� was actually used to generate a sample from such distributions. To solve
this issue, we use the lower dimensional subspace ∗ ⊂  excluding all the com-
ponents related to the delta distributions, which corresponds to a specular manifold
in the path space [52]. Using this subspace, the function 𝑃 (�̄�∗) defined on ∗ be-
comes invertible. We fill the rest of the components with uniform random numbers,
which is a special case of reversible jump MCMC [29]. This approach is also equiv-
alent to lazy mutation in PSSMLT, which also accounts for the case where there is a
difference in the number of dimensions between MCMC states.
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Algorithm 1 The mutation step with the combined proposal distribution. The mu-
tation is limited to maintain the path length. Given [�̄�, 𝑡] ∈  ×  as the current
state, this algorithm computes the next state [�̄�∗, 𝑡∗].
1: if primary space space mutation is selected then
2: [�̄�, 𝑡 ′] ∼ 𝑇 ([�̄�, 𝑡] → ⋅)
3: 𝑎 ← min(1,

�̃�𝑡′ (�̄�)�̃�𝑡′ (�̄�)𝑇 ([�̄�,𝑡′]→[�̄�,𝑡])
�̃�𝑡 (�̄�)�̃�𝑡 (�̄�)𝑇 ([�̄�,𝑡]→[�̄�,𝑡′]) ) ⊳ Eq. 6.11

4: if Random() < 𝑎 then
5: [�̄�∗, 𝑡∗] ← [�̄�, 𝑡 ′]
6: else
7: [�̄�∗, 𝑡∗] ← [�̄�, 𝑡]
8: end if
9: else
10: 𝑥 ← 𝑃−1

𝑡 (�̄�)
11: �̄� ∼ 𝑇 (𝑥 → ⋅)
12: 𝑎 ← min(1,

�̃�𝑡 (�̄�)𝑓 (�̄�)𝑇 ,𝑡 (�̂�→�̂�)
�̃�𝑡 (�̄�)𝑓 (�̄�)𝑇 ,𝑡 (�̂�→�̂�)) ⊳ Eq. 6.24

13: if Random() < 𝑎 then
14: [�̄�∗, 𝑡∗] ← [𝑃𝑡(�̄�), 𝑡]
15: else
16: [�̄�∗, 𝑡∗] ← [�̄�, 𝑡]
17: end if
18: end if

The transition kernel in this case becomes

𝑇 (𝑥 → �̄�) = 𝑇 ,𝑡(�̄� → �̄�)
||||
𝑑𝑃−1

𝑡 (�̄�∗)
𝑑�̄�∗

||||

||||
𝑑(�̄�∗, 𝑟)
𝑑�̄�

||||

= 𝑇 ,𝑡(�̄� → �̄�)
||||
𝑑𝑃−1

𝑡 (�̄�∗)
𝑑�̄�∗

||||
. (6.27)

The conversion from (�̄�∗, 𝑟) to �̄� is just a permutation so we have |||
𝑑(�̄�∗,𝑟)
𝑑�̄�

||| = 1. This
eventually yields the same equation as Eq. 6.24.

It is also possible to handle layered materials in a similar way as described above.
Instead of reflection or transmission for specular surfaces, we can assign a selected
lobe, e.g., diffuse or glossy, as a material type. When we want to convert a path to
random numbers, we can then choose a uniformly distributed random number in
the appropriate range that maps to this lobe. This treatment is similar in spirit to
different mathematical formulations of concurrent works [87, 9].

6.5 Implementation

We implemented our proposed method in our renderer, including primary sam-
ple space mutation techniques as well as the path space mutation techniques in
MLT [114] and manifold exploration [52]. As for manifold exploration, we only
implemented the variant for specular surfaces and omitted handling of glossy sur-
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faces. The path space mutation techniques do not contain any code specific to our
technique, so we can reuse them for MLT without modifications. Similar to MMLT,
our method separates the integral into path lengths and generates one Markov chain
for each path length. Therefore the bidirectional mutation which involves a change
in path length cannot be used in combination with our technique. Instead we im-
plemented a fixed length variant of the bidirectional mutation. Similar to MLT, our
method combines various mutation techniques and thus the selection of the muta-
tion strategy has a great influence on the efficiency. Following the suggestion in
Section 5.3.4 in the MLT paper [114], we randomly select a valid mutation strategy
given the current state to avoid meaningless selections which would always be re-
jected. We parallelize the algorithm by computing several Markov chains assigned
to different threads.

The core of the technique is almost the same as MMLT. We maintain the state
in the multiplexed primary sample space and initialize it with random numbers. In
our method, on the other hand, the mutation process in MMLT is replaced by Algo-
rithm 1. The entire flow of the algorithm is a mixture of two Metropolis-Hastings
updates for each state space. One difference is that we need to multiply MIS weights
in addition to the measurement contribution function in Eq. 6.24. Obviously, the
mapping functions introduce additional computational overhead for the path space
mutations. To alleviate this issue we maintain the mapped state 𝑃−1(�̄�) as a cache as
well as the state �̄� in the process of the mutations.

When going from path space to primary sample space, we need to decide on a
technique 𝑡 . The choice does not affect the correctness of the algorithm. It would, for
instance, be possible to importance sample 𝑡 based on theMIS weight of a given path,
i.e., the acceptance probability of the tentative sample in the Markov chain. In our
current implementation, we always initialize the Markov chain with a multiplexed
primary sample space state, such that it comes with a valid 𝑡 . If we choose a path
space mutation, we will leave the technique 𝑡 and the path length untouched, such
that 𝑡 is still valid when going back to multiplexed primary sample space.

6.6 Results

Setup We implemented MMLT [33], MLT [114], and the proposed algorithm in
the same rendering system. For mutation techniques, we implemented small and
large step mutations in the primary sample space, and the bidirectional mutations,
lens/caustic/multi-chain perturbations, and manifold exploration [52] as the path
space mutations. The reference images are rendered using BDPT or vertex con-
nection and merging [26]/unified path sampling [36] with more than six hours of
computation for each scene. We conducted all the experiments on a machine with
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Figure 6.5: Equal-time rendering (20 minutes) of two scenes. The door scene con-
tains glossy and specular materials and is illuminated by indirect lights with difficult
visibility. This scene can be effectively rendered with MLT [114], but exhibits sub-
optimal performance with multiplexed MLT (MMLT) [33]. On the other hand, the
necklace scene, which is characterized by glossy interreflections, shows the opposite
behavior. Our framework makes it possible to combine mutation strategies using the
two different state spaces of MLT and MMLT, enabling the combination of special-
ized mutation strategies, and resulting in a general algorithm that works robustly in
many cases.

an Intel Xeon E5-2698 v3 at 2.3 GHz using 32 threads.
The comparisons are all equal-time (20 minutes) with the maximum path length

between 9–20 depending on the scenes. Wemanually tuned parameters for mutation
techniques to achieve the best results for MMLT and MLT. We then used the same
set of best parameters for our methods. The code for our proposed method will be
available on our website.

Experiments Fig. 7.7 compares rendered images by MMLT, MLT, and our com-
bination of both. We rendered two different scenes with different characteristics to
highlight the need for fusing the state spaces. The door scene contains diffuse, specu-
lar, and glossy surfaces indirectly illuminated by a light leaking through the opening
door. MLT handles this scene well because it can partially regenerate a path depend-
ing on the selection of the mutation strategies. The performance of MMLT is worse
for this scene becauseMMLT needs to re-trace the complete path for everymutation.
The necklace scene consists mainly of glossy surfaces illuminated by light sources
of varying sizes causing complex interreflection between glossy surfaces. MMLT
is effective for this scene because the target distribution includes the MIS weights.
On the other hand, MLT tends to get stuck in local subspaces and generates non-
uniform artifacts in the rendered image. In both cases, the result shows that our

77



Reference MMLT MLT Ours

Error: 1.1056 Error: 0.2520 Error: 0.3537

Error: 0.3658 Error: 1.3433 Error: 0.6042

D
oo
r

N
ec
kl
ac
e

0.0

1.0

0.0

0.8

Figure 6.6: Comparisons of the errors for the scenes in Fig. 7.7. We show the relative
RMSE for each images, and also show the pixel-wise relative error. We can observe
that the combined mutation techniques with our method exhibit the error distribu-
tion similar to the better one of MMLT or MLT. Although the errors are suboptimal
compared to the better one for the respective situation, this figure indicates our pro-
posed method can moderately alleviate trade-offs between the two techniques, also
in terms of the errors.

method can alleviate this robustness issue by combining mutation techniques from
the two different state spaces.

We show two more scenes in Figs. 6.7 and 6.8. The Salle de bain scene contains
diffuse and glossy surfaces illuminated with an area light source. Specifically the
scene contains mirror models with low glossiness. This scene successfully captures
the trade-off between MMLT and MLT in a single image. MMLT can render the part
of the image visible from the mirror model more efficiently than MLT. On the other
hand, MLT can render the part containing diffuse surfaces better than MMLT. The
Grey and White Room scene consists of diffuse and glossy surfaces illuminated with
several area light sources. This scene shows similar characteristic as the door scene
and MLT outperforms MMLT. Again in this scene, our method can render the image
with similar performance as MLT, the better one.

Error Analysis Fig. 6.6 shows the pixel-wise error distributions for the images in
Fig. 7.7 compared to the references. We also show the error images for the scenes
in Figs. 6.7 and 6.8. We used relative root mean square error (rRMSE) as an error
metric. Our method exhibits similar error distributions as the better one in both
scenes. In both cases, however, rRMSE values are larger than the respective better
method, and some regions of the images display higher error than the better one.

We want to stress that achieving the best result among all is not our claim. The
practical benefit is the generality to provide good performance for a wide spectrum
of scenes, namely improved robustness, which is possible only by combining various
mutation techniques. This context is different from multiple importance sampling
which aims at an optimal combination of different sampling techniques. While
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MMLTMMLT MLTMLT OursOurs

MMLT, Error 0.1740MMLT, Error 0.1740 MLT, Error 0.6595MLT, Error 0.6595 Ours, Error 0.1957Ours, Error 0.1957

Figure 6.7: The Salle de bain scene (equal time comparison 20 min). A set of muta-
tion strategies employed in MLT has problems with the mirror (orange inset) while
MMLT is more noisy on the floor. Our combination alleviates both issues. Also note
the reduced clumping of samples in the edges of the room as compared to MLT and
the reduced noise in front of the first washing basin as compared to MMLT.

it would be ideal if we could select an optimal mutation strategy (or sets thereof)
and the optimal space for a given scene, a combination of mutation strategies in
different spaces has been just impossible to begin with, prior to our work. The
optimal combination of different mutation strategies also remains as an interesting
direction of the future work.

6.7 Discussion and Limitations

6.7.1 Discussion

Computational cost When switching from one space to another, our algorithm
requires extra computational cost to convert a sequence of numbers in the primary
sample space to a path, and then convert a path back to a sequence of numbers.
This computational cost is, however, negligible compared to the entire render time.
For instance, the conversion takes only 0.03% of the rendering time for the necklace
scene in Fig. 7.7. The expected number of required transitions was 0.131 per single
mutation for this scene. In addition, as was discussed in Section 6.5, it is possible to
cache some of these computations.

Combination with other state spaces We focused on combining the primary
sample space and the path space as they are major state spaces used in MCMC ren-
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MMLT, Error 0.0936MMLT, Error 0.0936 MLT, Error 0.0800MLT, Error 0.0800 Ours, Error 0.0867Ours, Error 0.0867

Figure 6.8: The Grey and White Room scene (equal time comparison 20 min). The
scene has similar noise characteristics as the door scene and MLT generates better
result than MMLT. Similar to the door scene, our method inherits the noise charac-
teristics from the better method.

dering. The half-vector space [60] is another state space that has its own advantages
over the path space. While we have not implemented their techniques in the ren-
dering system we used for this paper, it should be straightforward to combine them
by a composition of the transformations between domains (e.g., half vector space to
path space to primary sample space, and vice versa).

Non-bijective sampling procedures Our solution of handling deterministic cases
generalizes to more cases where the primary sample space formulation consumes
more numbers than the resulting dimensions in the path space. A concurrent
work [87] provides a mathematical formulation of a similar process. There is also
an interesting connection to using expected values in the measurement contribu-
tion when evaluating the acceptance probability [64], which might lead to a more
efficient approach for handling trans-dimensional moves in general.

Numerical precision When working in the primary sample space, extra care
should be taken to avoid problems with numerical precision. For example, when
mapping an outgoing direction to random numbers for BRDF sampling, numerical
errors can accumulate and introduce bias. It is essential to work in double precision
and add numerical guards against error accumulation and drifting. We implemented
two techniques to assess numerical precision.

Firstly, during initial path sampling, we use only the valid samples based on the
round-trip values. Given the candidate of the initial state 𝑢, we compute 𝑥 = 𝑃−1

𝑡 (�̄�)
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and the round-tripped initial state 𝑃𝑡(𝑥). We decided not to use �̄� as an initial state
if �̃�(𝑃𝑡(𝑥)) has zero contribution. This test in the initialization phase can introduce
MCMC start-up bias, which will vanish while converging as the Markov chain runs
for longer. Without this test, the chain might get stuck in the same state, depending
on the combination of the mutation strategies. Second, in the case of path space
mutation, we also check the round-trip values for the mutated path 𝑥 . We check if
𝐶(𝑃−1

𝑡 (𝑃𝑡(𝑥))) is non-zero, and the proposal is rejected immediately if the condition
is not met.

This verification process can be optimized because 𝑃−1
𝑡 (𝑃𝑡(𝑥)) can be reused if the

next mutation is a path space mutation. Similarly, this early rejection in the MH
update can introduce bias.

6.7.2 Limitation

One limitation of our formulation is the requirement of an analytical mapping be-
tween a path to a sequence of numbers. This requirement is particularly violated for
rejection sampling such as Woodcock tracking. In this case, we do not have an an-
alytical form of (inverse) cumulative distribution functions since rejection sampling
does not rely on the existence of such analytical solutions. It is still unclear how to
handle cases where an analytical form of such a mapping is not easily accessible.

6.8 Summary

We proposed a framework to fuse the path space and the primary sample space of
MCMC rendering for the first time. We explained how to formulate the connection
between these two state spaces by introducing a novel mapping from a path to a
sequence of numbers. This mapping is the inverse of existing path samplers and
we thus named them as inverse path samplers. We show how such an inverse map-
ping can be formulated with cumulative distribution functions of samples which are
oftentimes readily available as we already use inverse cumulative distribution func-
tions for path samplers. Inverse path samplers allow us to use mutations designed
only for one state space in another state space without modifying the mutation al-
gorithms themselves. The results demonstrate that the fusion of two state spaces
brings a practical benefit of robustness to different scene configurations, even when
the use of one state space alone fails. Our framework should be immediately useful
for existing MCMC rendering systems since it essentially introduces new mutation
strategies in each state space without modifying each implementation. We believe
that our framework leads to a new family of MCMC rendering methods since it pro-
vides a well-defined connection between two state spaces.
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Chapter 7

Bridging Chromatic Spaces For Spectral
Reflectance Reconstruction

7.1 Introduction

Spectral rendering simulates light transport considering spectral radiance per each
wavelength. The material description in spectral rendering thus needs to be a full
spectrum representation instead of a tristimulus representation (e.g., RGB colors).
For example, reflectance becomes spectral reflectance defined over all (visible) wave-
lengths.

This difference causes two major inconvenient aspects for using spectral render-
ing in practice. Firstly, a full spectrum representation is more expensive in terms of
memory footprint than tristimulus values. Unlike tristimulus colors, spectral values
are usually needed at more than three wavelengths. Secondly, obtaining spectral
data can be difficult and time consuming. Commonly available measuring devices
and image editing systems often support only tristimulus values. It is thus more
practical to use tristimulus values as inputs of a spectral rendering system.

This requirement leads to a problem of obtaining a spectrum given a tristimulus
color. Themain difficulty is that a tristimulus color can correspond to several spectra.
This concept is known as metamerism in color science and such spectra are called
metamers. Due to the metamerism, converting a tristimulus color to a spectrum is
an ill-posed problem.

Smits [103] showed that smoothness of reconstructed spectra can be used to re-
solve the metamerism. This heuristic is based on the observation that measured
spectra tend to be smooth [72]. A recent work [76] also uses the same heuristic.
Reconstructed spectra with this heuristic, however, have little connection with mea-
sured spectra except for being smooth. The difference will show up as visible color
shift in spectral rendering due to the presence of interreflections. Iterative multi-
plications of spectral distributions via interreflections can cause color shift even if
reconstructed spectra have the same corresponding tristimulus colors (Fig. 7.7).
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Figure 7.1: Overview of our method. The algorithm is separated into two phases: the
precomputation phase and the runtime phase. In the precomputation phase, mea-
sured spectra are separated into several clusters. For each set of clustered spectra, we
apply PCA to obtain the basis functions. In the runtime phase, an input tristimulus
color is used to determine the corresponding cluster computed in the precomputa-
tion phase. Using the basis functions associated with the cluster, we reconstruct a
spectrum.

We propose a data-driven approach to reproduce the measured spectra based
only on tristimulus colors. The key observation is that principal component analy-
sis (PCA) reveals that typical measured spectra can be accurately reproduced with
only a few principle components [15, 23]. Given measured spectra that satisfy this
property, we can reformulate conversion from tristimulus colors to spectra as a well-
defined matrix equation by considering the first three components. Unlike the pre-
vious methods in computer graphics, our approach does not assume that spectra are
smooth. Since we use measured spectra in the conversion process, we are able to re-
construct spectra that match well with actual measured spectra. Unlike similar work
in color science [6, 37], we use greedy clustering of spectra to directly minimize the
difference between the reconstructed spectra and the measured spectra. The run-
time algorithm is as simple as one matrix multiplication with an input tristimulus
color, which is suitable for spectral rendering. In summary, our contributions are:

• Reformulation of the relationship between tristimulus colors and spectra based
on PCA.

• Greedy clustering method which numerically minimizes the reconstruction
error.

• Simple runtime algorithm which converts tristimulus colors into spectral re-
flectances.
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7.2 Related Work

Reconstruction of a spectrum from various information is a major topic in color
science. The problem setting varies according to the information available for re-
construction. We focus on related work only on reconstruction from tristimulus
colors.

Optimization Approaches As presented in the pioneering work by Smits [103],
conversion from a tristimulus color to a spectrum can be formulated as a numerical
optimization problem. This formulation tries to find a spectrum that optimizes a
certain cost function such as the difference between converted tristimulus values and
input tristimulus values. Smits formulated this problem as a linear optimization of
discretized spectra. This method tries to find the smoothest possible spectrum that
retains the input tristimulus color which is based on the observation that natural
spectra are often smooth [72]. Dupont [22] tested various optimization methods
for finding a metameric spectrum similar to the method proposed by Smits, and
concluded that the Hawkyard method [45] is among the best.

One issue of this approach is that we need to perform a heavy optimization pro-
cess for a given input tristimulus color, which is too costly for certain applications.
Smits [103] thus proposed to use precomputed spectra only on some primal colors
and to rely on linear interpolation for other colors at runtime. Meng et al. [76] later
reported that we in fact need more precomputed samples to cover the XYZ tristimu-
lus color space as input. Our method is free from such interpolation and intrinsically
supports inputs from the XYZ color space. Another issue is that reconstructed spec-
tra with this approach can be very different from measured spectra, if the smooth-
ness heuristic does not hold. We avoid using smoothness heuristics via a data-driven
approach.

Data-driven Approaches Since measured spectra data are publicly available, one
can also analyze those data and reformulate the conversion process as a problem
of finding the relationship between tristimulus colors and measured spectra. Such
approaches usually express spectra as a weighted sum of basis functions, especially
based on PCA. Cohen [15] is the first to perform PCA on measured spectra, and he
found that spectral reflectances can be accurately represented by a small number
of basis functions. Since then, a weighted sum of basis functions is widely used
as a compact representation of measured spectra [88, 23, 109] for the purpose of
compressing measured data.

Building upon this idea, if one can find a well-defined relationship between tris-
timulus colors and the weights of basis functions, we are able to reconstruct spectra
from tristimulus colors. While a direct application of PCA for this purpose is ap-
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Figure 7.2: Approximation (red) of a measured spectrum (dotted) via direct PCA.
Although the approximated spectrum is generally similar to the original spectrum,
the corresponding colors (left: original, right: reconstructed) are visually different.

pealing, research in color science concluded that it does not work well. Marimont et
al. [73] thus proposed to use a different set of basis functions including the effect of
sensor responses by changing the optimization process in PCA. Other researchers
suggested to use variants of PCA such as weighted PCA [2] and adaptive NMF [3].
Our method is also built upon PCA, but we propose to cluster spectra in the input
color space before performing PCA. Unlike similar work in color science [6, 126],
our clustering algorithm directly minimizes reconstruction errors at runtime. As far
as we know, we are the first to take this data-driven approach in computer graphics.

Abed et al. [1] proposed to use a set of measured spectra directly and interpolate
them in the input color space for reconstruction. Some other methods suggest to
use non-linear mapping between a tristimulus color and a spectrum such as a feed-
forward neural network [97], a radial basis function network [84], and nonlinear
PCA with an auto-associative neural network [7]. While these methods improve the
accuracy of reconstruction, the tristimulus colors of the reconstructed spectra are
not guaranteed to match with the input tristimulus color (called round-trip error).
Our formulation theoretically guarantees zero round-trip errors (Eq. 7.9), which is
important for applications in computer graphics.

Representation of Spectral Distributions In addition to discretized samples
over wavelengths, one could represent a spectral distribution as a set of basis func-
tions such as polynomials [91, 106], Fourier basis [90], Gaussian quadrature [78],
or wavelets [14]. Since our goal is not to find a representation of spectral distribu-
tions, but to generate spectral distributions themselves, these works are orthogonal
to ours.
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Figure 7.3: Accumulated contribution with respect to the number of components
for direct PCA applied to the entire dataset (left) and the per-cluster contributions
(right) with our clustered PCA. These plots essentially show how accurately the en-
tire dataset is reproduced for each number of components.

7.3 Overview

Our goal is to reconstruct a spectral reflectance from a tristimulus color. We deter-
mined the following design criteria for this goal.

1. Reproduction of spectra: The reconstructed spectra should match the measured
spectra as well as possible.

2. Recovery of tristimulus colors: The reconstructed spectrum should represent
the input color.

3. Fast reconstruction: The runtime computational cost of reconstruction should
not be too high.

Note that achieving the criterion #1 does not necessarily mean satisfying the crite-
rion #2 automatically. For example, Fig. 7.2 shows L2-errorminimized reconstruction
of spectra with three bases by PCA, but their resulting tristimulus colors are gen-
erally different from the corresponding input colors. We thus need to account for
these points separately.

Fig. 7.1 shows the overview of our method. In the precomputation phase, we
first cluster a set of measured spectra into several disjoint subsets. The clustering
algorithm is designed to minimize the difference between the reconstructed spectra
and the measured spectra (criterion #1). For each cluster, we precompute a set of
basis functions based on PCA over the measured spectra within the cluster. A direct
application of PCA to our problem, however, is impossible since we do not know the
original measured spectra at runtime to compute weights for the basis functions.
We thus introduce a practical approximation to calculate those weights only from
input tristimulus colors. In order to alleviate additional error introduced by this
approximation, we also propose to use a clustered PCA with greedy minimization of
reconstruction error.
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Figure 7.4: Measured spectra plotted with the corresponding colors (top) and the
corresponding PCA basis functions (bottom) for each cluster. The thick, normal,
and thin lines show the first, second, and third principal components respectively.
Our clustering method can group spectra with similar shapes and the basis functions
are indeed very different for each cluster.

In the reconstruction phase, we first select the corresponding cluster based on
the given tristimulus color. We then reconstruct a spectrum as a weighted sum of the
precomputed basis functions associated with the selected cluster. This formulation
guarantees the recovery of the input tristimulus color after reconstruction (crite-
rion #2). The conversion process is just a matrix-vector multiplication, which is fast
enough for many applications (criterion #3).

7.4 Method

7.4.1 Tristimulus Colors

A color visible to the human eye can be represented by a spectrum 𝑆(𝜆) defined for
the wavelength 𝜆. We use the range Λ = [380, 730] nm in the following. In order to
describe various aspects of the human vision system, many color spaces have been
developed. Among them, the CIE XYZ color space is often used as the reference
color space among other color spaces. The conversion process from a spectrum 𝑆(𝜆)
to tristimulus values 𝐜 = [𝑋 𝑌 𝑍 ]𝑇 is

𝑋 = ∫
Λ
𝑆(𝜆)𝑥(𝜆)d𝜆 𝑌 = ∫

Λ
𝑆(𝜆)�̄�(𝜆)d𝜆 𝑍 = ∫

Λ
𝑆(𝜆)𝑧(𝜆)d𝜆, (7.1)

where 𝑥 , �̄� , and 𝑧 are the color matching functions that describe chromatic responses
of the standard observer. While our framework is not limited to this choice, we used
the analytical approximation of the color matching functions by Wyman et al. [124]
for the CIE 1931 standard observer. The RGB color space we used is the sRGB color
space (Rec.709) [110].
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7.4.2 Representation of Measured Spectra

We represent a spectrum as a weighted sum of a fixed set of basis functions via PCA.
Similar to previous work, we first discretize a spectrum 𝑆(𝜆) into 𝑛 fixed-width bins.
The width of each bin in our experiments is Δ = 10 nm (𝑛 = 36). We denote this
discretized spectrum as an 𝑛 dimensional vector 𝐬 ∈ ℝ𝑛. Running PCA over a set of
measured spectral reflectance data gives us a set of basis functions {𝐛𝑗}𝑗=1,…,𝑛. Each
measured spectrum under these new basis functions then becomes

𝐬 =
𝑛
∑
𝑗=1

𝑤𝑗 𝐛𝑗 , (7.2)

where 𝑤𝑗 = 𝐛𝑗 ⋅ 𝐬 is the weight for the 𝑗th basis function. Research in color sci-
ence shows that each measured spectrum can be well approximated by a few basis
functions [15, 72, 23].

This observation is confirmed by the accumulated contribution in Fig. 7.3. In
PCA, the accumulated contribution is utilized to assess howmuch of the information
is kept with a given number of components. This value for 𝑘-th component is defined
as a cummulative sum ∑𝑘

𝑖=1 𝑟𝑖 of the explained variance ratio 𝑟𝑖 = 𝜎𝑖/∑𝑛
𝑗=1 𝜎𝑗 where

𝜎𝑗 is the variance of the data around 𝑗-th principal component. The accumulated
contributions quickly approach to one only with a few basis functions regardless of
clustering. We thus use only three basis functions in the following.

This choice also means that our method is not applicable to the cases where
measured spectra cannot be accurately reconstructed just by three bases. While re-
production of such general measured spectra from tristimulus colors remains chal-
lenging, being a data-driven approach, our method allows us to take advantage of
measured spectra unlike the previous approaches in computer graphics [103, 76].

By truncating the sum to three components, we obtain a compact representation
of a spectrum 𝐬 via three weights 𝑤1, 𝑤2, 𝑤3 using the common three basis functions
𝐛1, 𝐛2, 𝐛3 as

𝐬 ≈ 𝑤1𝐛1 + 𝑤2𝐛2 + 𝑤3𝐛3. (7.3)

This direct approximation, however, may not recover the input tristimulus color. In
other words, the approximated spectrum and the original spectrum 𝐬 may not be
metameric spectra. Fig. 7.2 shows an example of this problem: while the approxima-
tion is similar to the original spectrum, it represents a different tristimulus color.

This property is not suitable for rendering because we eventually convert the
obtained spectrum to tristimulus colors to display final images and the difference
might be visually noticeable. We introduce a novel formulation that achieves a com-
pact presentation and the recovery of the input color at the same time. As such, our
work is not about merely having a compact representation of measured spectra for
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given tristimulus colors.

7.4.3 Reconstruction of Spectra via PCA

We can circumvent the above issue by considering a full conversion process between
spectra and tristimulus colors. We start with the relationship between 𝐜 and 𝐬 as in
Eq. 7.1. By discretizing the color matching functions as 𝑛 dimensional vectors 𝐱, 𝐲, 𝐳,
we have

𝑋 ≈ Δ (𝐱 ⋅ 𝐬) 𝑌 ≈ Δ (𝐲 ⋅ 𝐬) 𝑍 ≈ Δ (𝐳 ⋅ 𝐬) . (7.4)

Instead of representing a spectrum directly with basis functions as Eq. 7.3, we ap-
proximate 𝐬− 𝜇 with basis functions where 𝜇 is the average of the measured spectra:

𝐬 ≈ �̃� = 𝑤1𝐛1 + 𝑤2𝐛2 + 𝑤3𝐛3 + 𝜇. (7.5)

This modification is often adopted in PCA [79], and also used in color science [57,
11, 122]. Therefore we can approximate the corresponding tristimulus color 𝐜 as

𝐜 ≈ Δ
⎡
⎢
⎢
⎢
⎣

𝐱𝑇

𝐲𝑇

𝐳𝑇

⎤
⎥
⎥
⎥
⎦

�̃� = Δ
⎡
⎢
⎢
⎢
⎣

𝐱𝑇

𝐲𝑇

𝐳𝑇

⎤
⎥
⎥
⎥
⎦
[𝐛1𝐛2𝐛3]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀

⎡
⎢
⎢
⎢
⎣

𝑤1

𝑤2

𝑤3

⎤
⎥
⎥
⎥
⎦

+ 𝐜𝜇 = 𝑀
⎡
⎢
⎢
⎢
⎣

𝑤1

𝑤2

𝑤3

⎤
⎥
⎥
⎥
⎦

+ 𝐜𝜇 , (7.6)

where 𝐜𝜇 = Δ [𝐱 𝐲 𝐳]
𝑇
𝜇. The matrix𝑀 is a 3×3matrix where each element is defined

by a dot product of a basis function and a color matching function. The matrix is a
constant given the basis functions.

While each weight is given by 𝑤𝑗 = 𝐛𝑗 ⋅ (𝐬 − 𝜇), it is impossible to obtain weights
using this definition since the input is 𝐜, not 𝐬. We thus use the (pseudo) inverse of
𝑀 to approximate the weights as

⎡
⎢
⎢
⎢
⎣

𝑤1

𝑤2

𝑤3

⎤
⎥
⎥
⎥
⎦

≈ 𝑀−1(𝐜 − 𝐜𝜇) =
⎡
⎢
⎢
⎢
⎣

�̂�1

�̂�2

�̂�3

⎤
⎥
⎥
⎥
⎦

(7.7)

and obtain the reconstructed spectrum 𝐫 as

𝐬 ≈ �̃� ≈ 𝐫 = �̂�1𝐛1 + �̂�2𝐛2 + �̂�3𝐛3 + 𝜇. (7.8)

Remind that an approximated spectrum �̃� via PCA may not recover the input tris-
timulus color 𝐜. The reconstructed spectrum 𝐫, however, converts back to 𝐜 by con-
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Figure 7.5: Visualization of the precomputed clusters and measured spectra in the
xy-plane. The color of each point is the converted RGB color. The subdivision is
done for the entire xy plane, but we zoomed into the region where the measured
spectra exist.

struction since we have

Δ
⎡
⎢
⎢
⎢
⎣

𝐱𝑇

𝐲𝑇

𝐳𝑇

⎤
⎥
⎥
⎥
⎦

𝐫 = Δ
⎡
⎢
⎢
⎢
⎣

𝐱𝑇

𝐲𝑇

𝐳𝑇

⎤
⎥
⎥
⎥
⎦
[𝐛1𝐛2𝐛3]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀

⎡
⎢
⎢
⎢
⎣

�̂�1

�̂�2

�̂�3

⎤
⎥
⎥
⎥
⎦

+ 𝐜𝜇 = 𝑀 𝑀−1(𝐜 − 𝐜𝜇)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[�̂�1�̂�2�̂�3]

𝑇

+𝐜𝜇 = 𝐜. (7.9)

Therefore the reconstructed spectrum 𝐫 and the original spectrum 𝐬 are metamers by
construction in this formulation. Since we can precompute 𝐛1, 𝐛2, 𝐛3,𝑀 , and𝑀−1, the
runtime conversion is just one matrix vector multiplication𝑀−1(𝐜 − 𝐜𝜇) as in Eq. 7.7.
This formulation of conversion from tristimulus colors to spectra no longer relies on
smoothness heuristics.

7.4.4 Hierarchical Chromatic Clustering

While the reconstruction approach above works, Eq. 7.8 reveals that this approach
involves two different approximations: 𝐬 ≈ �̃� and �̃� ≈ 𝐫. Even though PCA minimizes
the L2 error ‖𝐬− �̃�‖2, due to another approximation �̃� ≈ 𝐫, the reconstructed spectrum
𝐫 does not necessarily well approximate the original spectrum 𝐬.

We address this issue by directly minimizing the L2 reconstruction error ‖𝐬 − 𝐫‖2.
Our idea is inspired by that natural spectra with similar colors tend to be similar [25].
Related work in color science [6, 126] suggest that similar approximation via PCA on
such spectra indeed improves the reconstruction accuracy, although they did not fa-
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Figure 7.6: Relashionship between the number of clusters and the reconstruction
error defined in Eq. 7.13. We can observe that the reconstruction error decreases as
the number of clusters increases, eventually becomes flat. Based on this observation,
we empirically fixed the number of clusters to eight.

cilitate the clustering scheme to directly minimize the reconstruction error. Building
upon this idea, we cluster the spectra in the xy plane of the CIE xyY color space such
that the resulting L2 reconstruction error ‖𝐬 − 𝐫‖2 over all the spectra is numerically
minimized.

To be concrete, we iteratively split the measured spectra to construct a kD-tree
on the xy plane. Each split tries to minimize the L2 reconstruction error ‖𝐬 − 𝐫‖2 in
a greedy manner. This procedure is inspired by a top-down kD-tree construction
with SAH [44]; our approach tries to minimize the L2 reconstruction error, while
the top-down kD-tree construction tries to minimize SAH.

Splitting Spectra We explain the process of splitting a set of spectra 𝑆 ≡ {𝐬 ∈ ℝ𝑛}
into two subsets 𝑆1 and 𝑆2. We determine the splitting plane perpendicular to each
axis and compute the splitting position so that the sum of the L2 reconstruction error
for each subset is minimized. Given the splitting axis 𝑝 ∈ {x, y} and the splitting
position 𝑣 ∈ [0, 1], the subsets 𝑆1 and 𝑆2 can be written as

𝑆1(𝑝, 𝑣) = {𝐬 ∈ 𝑆 ∣ 𝐜.𝑝 ≥ 𝑣}, (7.10)

𝑆2(𝑝, 𝑣) = 𝑆 ⧵ 𝑆1(𝑖, 𝑣), (7.11)

where 𝐜.𝑝 returns 𝑥 or 𝑦 coordinates of the measured spectrum 𝐬 in the xyY color
space according to the axis 𝑝. Using this definition, the splitting axis and position is
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Figure 7.7: Rendering using reconstructed spectral reflectances. We rendered a
scene with Lambertian surfaces illuminated by a black-body illuminant at 5500 K
using a spectral rendering system. For spectral reflectances, we use the method by
Smits [103], the method by Meng et al. [76], and our method to reconstruct them
from tristimulus colors. Tristimulus colors are from the corresponding reference
measured spectra [63]. The bottom row visualizes errors from the reference ren-
dering using the measured spectra. The existing methods suffer from color shifts
in indirect illumination due to the difference between the reconstructed spectra and
themeasured spectra. Ourmethod faithfully reproduces measured spectra only from
tristimulus colors, which has been considered challenging in computer graphics.

written as

(𝑖∗, 𝑣∗) = argmin
𝑖,𝑣

(Δ𝐸(𝑆1(𝑖, 𝑣)) + Δ𝐸(𝑆2(𝑖, 𝑣))). (7.12)

Δ𝐸(𝑆) is the sum of the reconstruction error for a set of spectra 𝑆:

Δ𝐸(𝑆) = ∑
𝐬∈𝑆

‖𝐬 − 𝐫‖2 , (7.13)

where 𝐫 is obtained by using the approach described in the last section with PCA
over the subset 𝑆. We note that the splitting axis and position is only determined
by the optimization process, thus our approach does not depends on the starting
condition.

At each leaf node, we store the basis functions, the conversion matrix, and the
mean values of the corresponding subset of spectra. At runtime, we traverse the tree
using the input tristimulus color and select the corresponding leaf node to recon-
struct the spectrum. Since the reconstruction process still recovers input tristimulus
colors, a spectrum and a color has a bijective mapping. A set of reconstructed spectra
at each leaf node minimizes L2 errors as in Eq. 7.13.

7.5 Results

Setup We used the two datasets of the matte Munsell color chips [63]. The dataset
I is a collection of 1269 measurements ranging from 380 nm to 800 nm with 1 nm
interval. The dataset II is a collection of 1250 measurements ranging from 400 nm to
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Figure 7.8: Comparison of the reference spectrum (dotted) and the reconstructed
spectra for the dataset I with the method by Smits [103] (blue), the method by Meng
et al. [76] (green), and the proposed approach (red) as well as the RGB color repre-
sented by the reference spectrum. All reconstructed spectra are converted from the
tristimulus colors of the reference spectra.

700 nm with 5 nm interval. The precomputation and the evaluation are conducted
respectively on the dataset I and II. The range of the vertical axis is [0, 1] for all the
plots in this section unless otherwise specified. The range of the horizontal axis is
[380, 730] nm or [400, 700] nm respectively for the results using the dataset I or II.
We integrated our method into a spectral rendering system based on bidirectional
path tracing [66, 115]. All images are rendered with equal time (1 hour) on the same
environment. We conducted all the experiments on a machine with an Intel Core
i7-5960X at 3.0 GHz using 16 threads. Both the rendered images and visualized col-
ors are in the sRGB color space under the D65 illuminant. The algorithm itself is
independent of a choice of the color space and the illuminant. We plan to distribute
an implementation of our method.

Clustering of Measured Spectra Fig. 7.4 shows the measured spectra in each
cluster for the dataset I. Fig. 7.5 visualizes the distribution of measured spectra and
the clusters in the xy-plane for the precomputation using the same dataset. We used
eight clusters so that the amount of precomputed data is roughly equal to that of
the method by Smits [103]. We also experimentally verified that the reconstruction
error does not decrease much for the number of clusters more than eight (Fig. 7.6).

We can observe that our algorithm successfully clusters spectra that have similar
shapes with different overall magnitudes. Ignoring themagnitudes is desirable in our
case since the reconstruction via PCA will take care of overall scaling. Fig. 7.4 also
shows the corresponding three PCA basis functions at the bottom. Different clusters
have quite different basis functions, validating the use of clustered PCA instead of
PCA over an entire dataset.

Reconstructed Spectra Fig. 7.8 and Fig. 7.9 compare severalmeasured spectra [63]
and reconstructed spectra by three different methods; the method by Smits [103]
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Figure 7.9: Comparison of the reference and reconstructed spectra for the dataset II
in similar configuration to Fig. 7.8.

Figure 7.10: Comparison of the reconstructed spectra with (red) and without (blue)
clustering for the dataset I. Similar to Fig. 7.8, we used the measured spectra for the
reference (dotted), and reconstructed them. We can observe that clustering improves
the accuracy of reconstruction, especially for longer wavelengths.

(blue line), the method by Meng et al. [76] (green line), and ours (red line). The
reference RGB color is shown in the top left of each plot. We can observe that the
reconstructed spectra with our method match well with the measured spectra in
many cases. The two previous methods, while producing metameric spectra like
ours, result in very different spectra. It is because real-world spectra are not simply
characterized as smooth in general, and a data-driven approach like ours is neces-
sary to capture more complex characteristics of real-world spectra. Our method is
the first to achieve such results in computer graphics. Tab. 7.1 summarizes the recon-
struction errors for each reconstruction method. Δ𝑒 is the L2 reconstruction error
for each reference spectrum ‖𝐬 − 𝐫‖2. Our method outperforms the other methods in
terms of most metrics in the table.

We note that the purpose of our approach is to achieve a compact representa-
tion of the spectrum based on the specific data and the accurate recovery of the
input color at the same time. In this sense, because we are not focus on the recon-
struction of the general reflectance spectra, our approach can be considered as data
compression rather than learning. In other words, we do not focus on applying the
precomputed data to reconstruct the features in the different datasets. This explains
why, in our experiments, we evaluated the reconstruction methods only with the
precomputed data obtained from the same dataset, instead of applying the precom-
puted data obtained from the different dataset.

Fig. 7.10 highlights the importance of clustering, illustrating the reconstructed
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Dataset Method Δ𝑒 Mean Δ𝑒 Med. Δ𝑒 Max.

I

Smits 0.1904 0.0819 1.8439
Meng et al. 0.1633 0.0710 1.1410
PCA only 0.0388 0.0156 0.9744

Ours 0.0138 0.0053 0.9875

II

Smits 0.1297 0.0633 1.1825
Meng et al. 0.1566 0.0985 1.0305
PCA only 0.0024 0.0014 0.0214

Ours 0.0022 0.0012 0.0220

Table 7.1: Reconstruction errors of the four reconstruction methods: Smits [103],
Meng et al. [76], PCA without clustering, and the proposed method. We show the
mean, the median, and the maximum of the reconstruction errors for each dataset
computed from the reference spectra. In almost all cases, our method is the most
accurate.

0.2

0.0

Error: 0.3082 Error: 0.2718 Error: 0.1532

Reference Smits Meng et al. Ours

Figure 7.11: Rendering using reconstructed spectral reflectances with a less naive
scene. The scene contains Lambertian surfaces and illuminated by black-body illu-
minants at 4000K and 5500K. Several light sources are placed behind the sofa. Similar
to Fig. 7.7, we render the images with three different methods and visualize the error
images as well as the corresponding error values, compared to the reference obtained
with the measured spectra.

spectra with and without clustering for the dataset I. For the results without cluster-
ing, we just apply PCA over all the measured spectra and use the same set of basis
functions for any input. While based on the same formulation via PCA (Eq. 7.8), clus-
tering dramatically improves the accuracy of reconstruction. We found that similar
approaches in color science [57, 11, 122, 79] are not significantly different from our
PCA without clustering in terms of error since they do not directly minimize recon-
struction error.

Rendering with Reconstructed Spectra We tested the importance of reproduc-
ing ofmeasured spectra in spectral rendering. The scene shown in Fig. 7.7 is rendered
with black-body illuminants of 5500 K. All the materials except for the light source
are Lambertian with spectral reflectances. We also render a less naive scene in
Fig. 7.11. The scene is illuminated by black-body illuminants of 4000 K and 5500 K.
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Figure 7.12: Rendering with different number of bounces using the spectra converted
from the same tristimulus color with the three different methods: the method by
Smits [103], the method by Meng et al. [76], and our method. As well as the ren-
dered images we also show error images and the error values correspoinding to the
images. We note that, because we use different references for each column, the error
images and the error values are irrelevant with respect to the different number of
path length, although we used the same error scale for the visualization.

Several light sources casts indirect lighting to the red wall. In both scenes, the top
row shows the resulting images using spectral reflectances produced by the methods
of Smits [103], Meng et al. [76], and ours. The bottom row visualizes per-pixel error
from the reference rendering using the measured spectra. We also show the error
values (rRMSE) correspoinding to the error images. The color map next to the
error images is linear according to the error values because we compute the errors
before tone mapping. We determine the range of the color map between zero and
the threshold near the maximum error among the images. The tristimulus color
used for reconstruction is obtained from the corresponding measured spectrum. We
can observe that the final color in the rendered images with the previous reconstruc-
tion methods suffer from color shifts especially for the indirect illumination. This
result implies that different metameric spectra can in fact lead to visible differences
because the reflectances are multiplied by many times. This observation underlines
the importance of accurate reproduction of measured spectra.

We also show rendered images with different number of bounces using the three
different methods (Fig. 7.12). Similarly, we also show the error images obtained by
the comparison with the references using the corresponding measured spectra for
each path length. We can observe the similar tendency that our method can generate
the better results.

Fig. 7.13 shows how the number of clusters affects the rendered images. The
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# of clusters: 1 # of clusters: 2 # of clusters: 4 # of clusters: 8

Error: 0.2396 Error: 0.1615 Error: 0.1342 Error: 0.0712 0.5

0.0

Figure 7.13: Rendered images using the reconstructed spectra from the multiple
number of clusters, converted from the same tristimulus color. The top row shows
the rendered images using the spectrum with the corresponding number of clusters.
The bottom row shows the pixel-wised error compared to the reference rendered
with the original spectrum corresponding to the tristimulus color, as well as the er-
ror values.

(c)
(a)

(b)

(a) (b) (c)

Figure 7.14: Some sets of spectra across cluster boundaries. The left-most plot is
the xy plane with three different lines across the cluster boundaries. The right three
figures are corresponding reconstructed spectra to the samples points on the lines.
We assigned the different line types (solid, dashes) for the spectra in the different
clusters.

bottom line shows the error compared to the reference obtained with the measured
spectra corresponding to the input tristimulus color. Due to the inaccurate recon-
struction, the rendered image with a small number of clusters suffers from the color
shift compared to the reference. We can observe that the color shift can be alleviated
by adopting sufficient number of clusters.

7.6 Limitations

Reconstruction in Cluster Boundaries Fig. 7.14 illustrates the change of the re-
constructed spectra in the cluster boundaries. The left-most plot shows the xy plane
with cluster boundaries. The sampled points on each of lines (a) - (c) correspond to
the set of the spectra in the right three sets of spectra. Fig. 7.15 shows some rendered
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Figure 7.15: Rendered images using the reconstructed spectra with the two consec-
utive colors for the lines (b) and (c) in Fig. 7.15. We selected the consecutive colors
so that the differences of x or y values are within 10−5. We rendered the scene con-
taining indirect illumination with the spectral reflectances using two reconstructed
spectra from the two colors. The right-most images are the difference of two images.

Dataset Method Δ𝑒 Mean Δ𝑒 Med. Δ𝑒 Max.

Glossy

Smits 0.0050 0.0023 0.0523
Meng et al. 0.0061 0.0028 0.0484
PCA only 0.0014 0.0006 0.0441

Ours 0.0006 0.0002 0.0455

Natural Colors

Smits 0.0057 0.0036 0.0643
Meng et al. 0.0054 0.0037 0.0602
PCA only 0.0027 0.0017 0.0285

Ours 0.0021 0.0013 0.0223

Table 7.2: Reconstruction errors of the four reconstruction methods similar to
Tab. 7.1 for the two different datasets: glossy and natural colors [63].

images for the closest two samples in the lines (b) and (c) within the difference of 10−5

in the value of x or y. Since our clustering algorithm does not explicitly consider
the continuity across the boundaries, we found that the shapes of the spectra do not
necessarily vary smoothly across the boundaries. For example, while the cases (a)
and (b) show smooth changes, the case (c) shows some discontinuous changes in the
shape of the spectrum. For the case (c), the visual difference in the rendered images
(Fig. 7.15, bottom) is small, but noticeable for interreflection.

Reconstruction of Saturated Colors To obtain physically plausible results in
spectral rendering, spectral reflectances must be in the range of [0, 1] for every wave-
length. Our formulation using PCA does not guarantee this property. That is, the
reconstructed spectrum can be less than zero or more than one at certain wave-
lengths. We thus need to clamp the output spectra to the range of [0, 1] to guarantee

98



this property. Clamped spectra, however, may not convert back to the input tris-
timulus color. Fig. 7.16 illustrates some examples of the case. We reconstructed the
spectrum from the saturated colors, constraining each component of the RGB color
to either zero or one. The values of the spectra reconstructed from such colors tend
to be outside the range of [0, 1]. Meng et al. [76] pointed out that some colors are
impossible to be represented within the range of [0, 1], and suggested some adjust-
ment techniques to produce physically plausible spectra in such cases. Since our
formulation intrinsically supports the XYZ color space, we can use their technique.

We also visualize the ratio of the successful reconstruction in the range of [0, 1]
in the 𝑥𝑦-plane (Fig. 7.17). The region enclosed by the solid line shows the range
of visible chromacities and the region enclosed by the dotted line shows the coutor
line of the measured spectra for the dataset I. The color map represents the ratio
of the successful reconstruction. The color is assigned for each bin representing
a small part in the xy-plane and the ratio is estimated by computing the number
of successful and unsuccessful reconstructions for each bin. The red color means
all reconstructed spectra are in the range of [0, 1] and the blue color represents the
spectra are outside the range of [0, 1], or the visible region. We can observe that the
reconstruction succeeds in a large part of the domain defined by the measurements
yet fails in the outside of the domain.

The maximum error in Tab. 7.1 shows that there are cases where our method
still fails to reproduce measured spectra. We do not claim that our method is capable
of reproducing any natural spectra since some natural spectra can have very differ-
ent characteristics than typical ones [125]. Our method is certainly not perfect and
metamerism may still occur if we consider all possible spectra. In the paper, we
tested our method with the measured spectra of Munsell Matte color chips. While
those spectra certainly do not represent all the natural spectra, our method is still
applicable when measured spectra has a few degree of freedoms as was confirmed
firmly in color science [15, 72, 23] for different datasets. Ourmethod thus can be seen
as a general approach to find a compact and reversible (in the sense that it recovers
the input colors) representation of a given measured spectra.

For example, if measured spectra for various metals are given and we use the
input color to specify the color of a metal, our method reproduces spectra of vari-
ous metals, not, Munsell Matte color chips. Tab. 7.2 shows such examples where the
reconstruction errors are calculated for the two different datasets: glossy and natu-
ral colors [63]. Our method indeed generates more accurate results than the other
existing methods even in these examples.

Reconstruction of General Spectra Our method does not support spectra with
intrinsic distributions such as the spectra measured from the material with the flu-
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Figure 7.16: Comparison of the reconstructed spectra for the saturated colors with
the method by Smits (blue), the method by Meng et al. (green), and our approach
(red). We reconstructed the spectrum from the eight combinations of the saturated
colors whose components of the color are equal to one or zero. The dotted lines
illustrates the range of [0, 1]. The color plate in each plot shows the color converted
from the reference spectrum.

orescence or the structural colors. For such spectra, principle component analysis
might not lead to an efficient approximation. Our method does not directly support
emission spectra either. One technique to use emission spectra within our method
is scaling down the input emission tristimulus color into [0, 1]3, converting it to an
emission spectrum using our method, then scaling up the resulting spectrum. This
technique, however, is not guaranteed at all to reproduce a measured emission spec-
trum with the same emission tristimulus color.

7.7 Summary

We introduced a novel method to reproduce spectral reflectances from tristimulus
colors. Our key idea is to use prior knowledge on the actual measured spectra as
studied in color science. Unlike existing methods in computer graphics, the use of
measured spectra allows us to formulate the conversion process without smooth-
ness heuristics. Our formulation also clarifies that a similar formulation in color
science would have uncontrolled approximation error. In order to address this prob-
lem, we proposed a clustering technique to directly minimize the approximation
error. At runtime, an input tristimulus color is converted to a spectrum using the
precomputed basis functions and the conversion matrix to weights for those basis
functions. Our experiments demonstrate that the proposed method can faithfully
reproduce measured spectra without relying on existing heuristics or heavy opti-
mizations at runtime. We expect that our method can be used for many different
applications with spectral data. In addition, since our work introduces the mapping
between RGB values a certain set of measured spectra, it might lead to more accurate
color reproduction in printing, given RGB images.
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Figure 7.17: Visualization of the ratio of the reconstructed spectra in the range of
[0, 1] in the 𝑥𝑦-plane. The solid line shows the region of the visible spectra and
the dotted line shows the contor line of the measured spectra in the dataset I. We
separated the 𝑥𝑦-plane into a set of small regions and assigned the color for each
region according to the estimated ratio of the spectra in the range.

101



Chapter 8

Conclusion

In this thesis, we presented several novel methods to achieve the efficiency and the
accuracy in the simulation and themodeling in the light transport simulation. We fo-
cus on the two specific problems in light transport simulation. One is to improve the
efficiency of the (Markov chain) Monte Carlo rendering, and the other is to improve
the accuracy of the accuracy in the spectral reflectance reconstruction. In order
to achieve the goal, we facilitated the general concept of bridging different spaces
inherent to the problems in light transport simulation. In this thesis, we explored
the three different techniques that each focuses on the corresponding representa-
tive spaces: strategy spaces, state spaces, and chromatic spaces. Each of the spaces
represents the fundamental concepts corresponding to the problems of interest. We
attempted to resolve the problem by facilitating the relationship between the spaces
as components. Specifically, in this thesis, we developed the following three different
methods appeared from the different contexts in light transport simulation:

First, we presented the method to bridge the strategy spaces of light transport
simulations. The solution space of the rendering algorithms is called the strategy
spaces. In this method, we bridge the strategy spaces by blending the results of
different light transport simulation algorithms via machine learning. The key idea
of the approach is to learn the relationship between a class of light paths based on the
classification of the lighting effects and the performance of each algorithm. Unlike
the existing techniques, the method does not require the underlying knowledge of
the underlying combined rendering algorithms, which makes it easy to apply the
approach to the different rendering algorithms.

Next, we presented the method to bridge the state spaces of Markov chain Monte
Carlo rendering. We focus on bridging the two different state spaces with different
mathematical background: the path space and the primary sample space. We pro-
vided the formulation to connect between the two state spaces by introducing a novel
mapping from a path to a sequence of numbers, named as the inverse path sampler.
This allowed us to combine different mutation algorithms designed for each state
space. The inverse path sampler can be derived easily and we need not to mod-
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ify the existing mutation algorithms. The numerical experiments demonstrate that
this combination of the mutation techniques faithfully resolves the trade-off, where
either one of the algorithms works better for some part of the scene.

Finally, we presented the method to bridge the chromatic spaces which deter-
mines the representation of spectra in order to improve the accuracy in the spectral
reflectance reconstruction. Unlike the existing approaches in the computer graphic
field, we incorporated the prior knowledge on the actual measured spectra to recon-
structed the spectrum. The proposed method is achieved by facilitating the relation-
ship between the original and lower dimensional representation of the spectra ob-
tained by the principal component analysis, which has been originally studied in the
color science field. In consequence, the reconstructed spectrum using the proposed
approach can faithfully reproduce the shape of the spectra similar to the measured
spectra, as well as retaining the original tristimulus values as possible.
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