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Figure 1: Rendering using reconstructed spectral reflectances. We rendered a scene with Lambertian surfaces illuminated by a black-body
illuminant at 5500 K using a spectral rendering system. For spectral reflectances, we use the method by Smits [Smi99], the method by Meng et
al. [MSHD15], and our method to reconstruct them from tristimulus colors. Tristimulus colors are from the corresponding reference measured
spectra [KPJ06]. The bottom row visualizes errors from the reference rendering using the measured spectra. The existing methods suffer from
color shifts in indirect illumination due to the difference between the reconstructed spectra and the measured spectra. Our method faithfully
reproduces measured spectra only from tristimulus colors, which has been considered challenging in computer graphics.

Abstract

Physically based rendering systems often support spectral rendering to simulate light transport in the real world. Material
representations in such simulations need to be defined as spectral distributions. Since commonly available material data are in
tristimulus colors, we ideally would like to obtain spectral distributions from tristimulus colors as an input to spectral rendering
systems. Reproduction of spectral distributions given tristimulus colors, however, has been considered an ill-posed problem
since single tristimulus color corresponds to a set of different spectra due to metamerism. We show how to resolve this problem
using a data-driven approach based on measured spectra and propose a practical algorithm that can faithfully reproduce a
corresponding spectrum only from the given tristimulus color. The key observation in color science is that a natural measured
spectrum is usually well approximated by a weighted sum of a few basis functions. We show how to reformulate conversion
of tristimulus colors to spectra via principal component analysis. To improve accuracy of conversion, we propose a greedy
clustering algorithm which minimizes reconstruction error. Using precomputation, the runtime computation is just a single
matrix multiplication with an input tristimulus color. Numerical experiments show that our method well reproduces the reference
measured spectra using only the tristimulus colors as input.

Keywords: spectral rendering, spectral reflectance reconstruction

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Spectral rendering simulates light transport considering spectral
radiance per each wavelength. The material description in spectral
rendering thus needs to be a full spectrum representation instead
of a tristimulus representation (e.g., RGB colors). For example,
reflectance becomes spectral reflectance defined over all (visible)
wavelengths.

This difference causes two major inconvenient aspects for using
spectral rendering in practice. Firstly, a full spectrum representation
is more expensive in terms of memory footprint than tristimulus
values. Unlike tristimulus colors, spectral values are usually needed

at more than three wavelengths. Secondly, obtaining spectral data
can be difficult and time consuming. Commonly available measuring
devices and image editing systems often support only tristimulus
values. It is thus more practical to use tristimulus values as inputs of
a spectral rendering system.

This requirement leads to a problem of obtaining a spectrum
given a tristimulus color. The main difficulty is that a tristimulus
color can correspond to several spectra. This concept is known as
metamerism in color science and such spectra are called metamers.
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Figure 2: Overview of our method. The algorithm is separated into two phases: the precomputation phase and the runtime phase. In the
precomputation phase, measured spectra are separated into several clusters. For each set of clustered spectra, we apply PCA to obtain the
basis functions. In the runtime phase, an input tristimulus color is used to determine the corresponding cluster computed in the precomputation
phase. Using the basis functions associated with the cluster, we reconstruct a spectrum.

Due to the metamerism, converting a tristimulus color to a spectrum
is an ill-posed problem.

Smits [Smi99] showed that smoothness of reconstructed spectra
can be used to resolve the metamerism. This heuristic is based on
the observation that measured spectra tend to be smooth [Mal86]. A
recent work [MSHD15] also uses the same heuristic. Reconstructed
spectra with this heuristic, however, have little connection with
measured spectra except for being smooth. The difference will show
up as visible color shift in spectral rendering due to the presence of
interreflections. Iterative multiplications of spectral distributions via
interreflections can cause color shift even if reconstructed spectra
have the same corresponding tristimulus colors (Fig. 1).

We propose a data-driven approach to reproduce the measured
spectra based only on tristimulus colors. The key observation is that
principal component analysis (PCA) reveals that typical measured
spectra can be accurately reproduced with only a few principle
components [Coh64, FB04]. Given measured spectra that satisfy
this property, we can reformulate conversion from tristimulus colors
to spectra as a well-defined matrix equation by considering the
first three components. Unlike the previous methods in computer
graphics, our approach does not assume that spectra are smooth.
Since we use measured spectra in the conversion process, we are
able to reconstruct spectra that match well with actual measured
spectra. Unlike similar work in color science [AERN06,HSN16], we
use greedy clustering of spectra to directly minimize the difference
between the reconstructed spectra and the measured spectra. The
runtime algorithm is as simple as one matrix multiplication with an
input tristimulus color, which is suitable for spectral rendering. In
summary, our contributions are:

• Reformulation of the relationship between tristimulus colors and
spectra based on PCA.
• Greedy clustering method which numerically minimizes the re-

construction error.
• Simple runtime algorithm which converts tristimulus colors into

spectral reflectances.

2. Related Work

Reconstruction of a spectrum from various information is a major
topic in color science. The problem setting varies according to the
information available for reconstruction. We focus on related work
only on reconstruction from tristimulus colors.

Optimization Approaches. As presented in the pioneering work
by Smits [Smi99], conversion from a tristimulus color to a spectrum
can be formulated as a numerical optimization problem. This formu-
lation tries to find a spectrum that optimizes a certain cost function
such as the difference between converted tristimulus values and input
tristimulus values. Smits formulated this problem as a linear optimi-
zation of discretized spectra. This method tries to find the smoothest
possible spectrum that retains the input tristimulus color which is ba-
sed on the observation that natural spectra are often smooth [Mal86].
Dupont [Dup02] tested various optimization methods for finding a
metameric spectrum similar to the method proposed by Smits, and
concluded that the Hawkyard method [Haw93] is among the best.

One issue of this approach is that we need to perform a heavy
optimization process for a given input tristimulus color, which is too
costly for certain applications. Smits [Smi99] thus proposed to use
precomputed spectra only on some primal colors and to rely on linear
interpolation for other colors at runtime. Meng et al. [MSHD15]
later reported that we in fact need more precomputed samples to
cover the XYZ tristimulus color space as input. Our method is free
from such interpolation and intrinsically supports inputs from the
XYZ color space. Another issue is that reconstructed spectra with
this approach can be very different from measured spectra, if the
smoothness heuristic does not hold. We avoid using smoothness
heuristics via a data-driven approach.

Data-driven Approaches. Since measured spectra data are publi-
cly available, one can also analyze those data and reformulate the
conversion process as a problem of finding the relationship between
tristimulus colors and measured spectra. Such approaches usually
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Figure 3: Approximation (red) of a measured spectrum (dotted)
via direct PCA. Although the approximated spectrum is generally
similar to the original spectrum, the corresponding colors (left:
original, right: reconstructed) are visually different.

express spectra as a weighted sum of basis functions, especially ba-
sed on PCA. Cohen [Coh64] is the first to perform PCA on measured
spectra, and he found that spectral reflectances can be accurately
represented by a small number of basis functions. Since then, a
weighted sum of basis functions is widely used as a compact repre-
sentation of measured spectra [PHJ89, FB04, TB05] for the purpose
of compressing measured data.

Building upon this idea, if one can find a well-defined relations-
hip between tristimulus colors and the weights of basis functions,
we are able to reconstruct spectra from tristimulus colors. While a
direct application of PCA for this purpose is appealing, research
in color science concluded that it does not work well. Marimont et
al. [MW92] thus proposed to use a different set of basis functions in-
cluding the effect of sensor responses by changing the optimization
process in PCA. Other researchers suggested to use variants of PCA
such as weighted PCA [AAA08] and adaptive NMF [AA10]. Our
method is also built upon PCA, but we propose to cluster spectra in
the input color space before performing PCA. Unlike similar work
in color science [AERN06, ZX08], our clustering algorithm directly
minimizes reconstruction errors at runtime. As far as we know, we
are the first to take this data-driven approach in computer graphics.

Abed et al. [AAA09] proposed to use a set of measured spectra
directly and interpolate them in the input color space for recon-
struction. Some other methods suggest to use non-linear mapping be-
tween a tristimulus color and a spectrum such as a feed-forward neu-
ral network [SW02], a radial basis function network [NPB14], and
nonlinear PCA with an auto-associative neural network [BAPA13].
While these methods improve the accuracy of reconstruction, the
tristimulus colors of the reconstructed spectra are not guaranteed to
match with the input tristimulus color (called round-trip error). Our
formulation theoretically guarantees zero round-trip errors (Eq. 9),
which is important for applications in computer graphics.

Representation of Spectral Distributions. In addition to discreti-
zed samples over wavelengths, one could represent a spectral dis-
tribution as a set of basis functions such as polynomials [RF91,
SFDC01], Fourier basis [Pee93], Gaussian quadrature [Mey88], or
wavelets [CW05]. Since our goal is not to find a representation of
spectral distributions, but to generate spectral distributions themsel-
ves, these works are orthogonal to ours.

3. Overview

Our goal is to reconstruct a spectral reflectance from a tristimulus
color. We determined the following design criteria for this goal.

Figure 4: Accumulated contribution with respect to the number
of components for direct PCA applied to the entire dataset (left)
and the per-cluster contributions (right) with our clustered PCA.
These plots essentially show how accurately the entire dataset is
reproduced for each number of components.

1. Reproduction of spectra: The reconstructed spectra should match
the measured spectra as well as possible.

2. Recovery of tristimulus colors: The reconstructed spectrum
should represent the input color.

3. Fast reconstruction: The runtime computational cost of recon-
struction should not be too high.

Note that achieving the criterion #1 does not necessarily mean
satisfying the criterion #2 automatically. For example, Fig. 3 shows
L2-error minimized reconstruction of spectra with three bases by
PCA, but their resulting tristimulus colors are generally different
from the corresponding input colors. We thus need to account for
these points separately.

Fig. 2 shows the overview of our method. In the precomputa-
tion phase, we first cluster a set of measured spectra into several
disjoint subsets. The clustering algorithm is designed to minimize
the difference between the reconstructed spectra and the measured
spectra (criterion #1). For each cluster, we precompute a set of basis
functions based on PCA over the measured spectra within the cluster.
A direct application of PCA to our problem, however, is impossi-
ble since we do not know the original measured spectra at runtime
to compute weights for the basis functions. We thus introduce a
practical approximation to calculate those weights only from input
tristimulus colors. In order to alleviate additional error introduced
by this approximation, we also propose to use a clustered PCA with
greedy minimization of reconstruction error.

In the reconstruction phase, we first select the corresponding
cluster based on the given tristimulus color. We then reconstruct
a spectrum as a weighted sum of the precomputed basis functions
associated with the selected cluster. This formulation guarantees the
recovery of the input tristimulus color after reconstruction (criterion
#2). The conversion process is just a matrix-vector multiplication,
which is fast enough for many applications (criterion #3).

4. Method

4.1. Tristimulus Colors

A color visible to the human eye can be represented by a
spectrum S(λ) defined for the wavelength λ. We use the range
Λ = [380,730] nm in the following. In order to describe various
aspects of the human vision system, many color spaces have been
developed. Among them, the CIE XYZ color space is often used as
the reference color space among other color spaces. The conversion
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Figure 5: Measured spectra plotted with the corresponding colors (top) and the corresponding PCA basis functions (bottom) for each cluster.
The thick, normal, and thin lines show the first, second, and third principal components respectively. Our clustering method can group spectra
with similar shapes and the basis functions are indeed very different for each cluster.

process from a spectrum S(λ) to tristimulus values c = [X Y Z]T is

X =
∫

Λ

S(λ)x̄(λ)dλ Y =
∫

Λ

S(λ)ȳ(λ)dλ Z =
∫

Λ

S(λ)z̄(λ)dλ,

(1)
where x̄, ȳ, and z̄ are the color matching functions that describe
chromatic responses of the standard observer. While our framework
is not limited to this choice, we used the analytical approximation
of the color matching functions by Wyman et al. [WSS13] for the
CIE 1931 standard observer. The RGB color space we used is the
sRGB color space (Rec.709) [Uni02].

4.2. Representation of Measured Spectra

We represent a spectrum as a weighted sum of a fixed set of basis
functions via PCA. Similar to previous work, we first discretize a
spectrum S(λ) into n fixed-width bins. The width of each bin in
our experiments is ∆ = 10 nm (n = 36). We denote this discretized
spectrum as an n dimensional vector s ∈ Rn. Running PCA over
a set of measured spectral reflectance data gives us a set of basis
functions {b j} j=1,...,n. Each measured spectrum under these new
basis functions then becomes

s =
n

∑
j=1

w j b j, (2)

where w j = b j · s is the weight for the jth basis function. Research
in color science shows that each measured spectrum can be well
approximated by a few basis functions [Coh64, Mal86, FB04].

This observation is confirmed by the accumulated contribution in
Fig. 4. In PCA, the accumulated contribution is utilized to assess
how much of the information is kept with a given number of compo-
nents. This value for k-th component is defined as a cummulative
sum ∑

k
i=1 ri of the explained variance ratio ri = σi/∑

n
j=1 σ j where

σ j is the variance of the data around j-th principal component. The
accumulated contributions quickly approach to one only with a few
basis functions regardless of clustering. We thus use only three basis
functions in the following.

This choice also means that our method is not applicable to the
cases where measured spectra cannot be accurately reconstructed
just by three bases. While reproduction of such general measu-
red spectra from tristimulus colors remains challenging, being a
data-driven approach, our method allows us to take advantage

of measured spectra unlike the previous approaches in computer
graphics [Smi99, MSHD15].

By truncating the sum to three components, we obtain a compact
representation of a spectrum s via three weights w1,w2,w3 using
the common three basis functions b1,b2,b3 as

s≈ w1b1 +w2b2 +w3b3. (3)

This direct approximation, however, may not recover the input tristi-
mulus color. In other words, the approximated spectrum and the
original spectrum s may not be metameric spectra. Fig. 3 shows an
example of this problem: while the approximation is similar to the
original spectrum, it represents a different tristimulus color.

This property is not suitable for rendering because we eventually
convert the obtained spectrum to tristimulus colors to display final
images and the difference might be visually noticeable. We introduce
a novel formulation that achieves a compact presentation and the
recovery of the input color at the same time. As such, our work
is not about merely having a compact representation of measured
spectra for given tristimulus colors.

4.3. Reconstruction of Spectra via PCA

We can circumvent the above issue by considering a full conversion
process between spectra and tristimulus colors. We start with the
relationship between c and s as in Eq. 1. By discretizing the color
matching functions as n dimensional vectors x,y,z, we have

X ≈ ∆(x · s) Y ≈ ∆(y · s) Z ≈ ∆(z · s) . (4)

Instead of representing a spectrum directly with basis functions
as Eq. 3, we approximate s−µ with basis functions where µ is the
average of the measured spectra:

s≈ s̃ = w1b1 +w2b2 +w3b3 +µ. (5)

This modification is often adopted in PCA [MLBB08], and also
used in color science [JMW∗64, Bri02, WB04]. Therefore we can
approximate the corresponding tristimulus color c as

c≈ ∆

xT

yT

zT

 s̃ = ∆

xT

yT

zT

[b1b2b3
]

︸ ︷︷ ︸
M

w1
w2
w3

+ cµ = M

w1
w2
w3

+ cµ,

(6)
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Figure 6: Visualization of the precomputed clusters and measured
spectra in the xy-plane. The color of each point is the converted
RGB color. The subdivision is done for the entire xy plane, but we
zoomed into the region where the measured spectra exist.

where cµ = ∆
[
xyz

]T µ. The matrix M is a 3×3 matrix where each
element is defined by a dot product of a basis function and a color
matching function. The matrix is a constant given the basis functi-
ons.

While each weight is given by w j = b j · (s−µ), it is impossible
to obtain weights using this definition since the input is c, not s. We
thus use the (pseudo) inverse of M to approximate the weights asw1

w2
w3

≈M−1(c− cµ) =

ŵ1
ŵ2
ŵ3

 (7)

and obtain the reconstructed spectrum r as

s≈ s̃≈ r = ŵ1b1 + ŵ2b2 + ŵ3b3 +µ. (8)

Remind that an approximated spectrum s̃ via PCA may not recover
the input tristimulus color c. The reconstructed spectrum r, however,
converts back to c by construction since we have

∆

xT

yT

zT

r=∆

xT

yT

zT

[b1b2b3
]

︸ ︷︷ ︸
M

ŵ1
ŵ2
ŵ3

+cµ =M M−1(c− cµ)︸ ︷︷ ︸[
ŵ1ŵ2ŵ3

]T

+cµ = c.

(9)
Therefore the reconstructed spectrum r and the original spectrum
s are metamers by construction in this formulation. Since we can
precompute b1, b2, b3, M, and M−1, the runtime conversion is just
one matrix vector multiplication M−1(c− cµ) as in Eq. 7. This
formulation of conversion from tristimulus colors to spectra no
longer relies on smoothness heuristics.

4.4. Hierarchical Chromatic Clustering

While the reconstruction approach above works, Eq. 8 reveals that
this approach involves two different approximations: s ≈ s̃ and
s̃ ≈ r. Even though PCA minimizes the L2 error ‖s− s̃‖2, due to
another approximation s̃≈ r, the reconstructed spectrum r does not
necessarily well approximate the original spectrum s.
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Figure 7: Relashionship between the number of clusters and the
reconstruction error defined in Eq. 13. We can observe that the
reconstruction error decreases as the number of clusters increases,
eventually becomes flat. Based on this observation, we empirically
fixed the number of clusters to eight.

We address this issue by directly minimizing the L2 recon-
struction error ‖s− r‖2. Our idea is inspired by that natural spectra
with similar colors tend to be similar [GBNHAR98]. Related work
in color science [AERN06, ZX08] suggest that similar approxima-
tion via PCA on such spectra indeed improves the reconstruction
accuracy, although they did not facilitate the clustering scheme to
directly minimize the reconstruction error. Building upon this idea,
we cluster the spectra in the xy plane of the CIE xyY color space
such that the resulting L2 reconstruction error ‖s− r‖2 over all the
spectra is numerically minimized.

To be concrete, we iteratively split the measured spectra to con-
struct a kD-tree on the xy plane. Each split tries to minimize the L2
reconstruction error ‖s− r‖2 in a greedy manner. This procedure
is inspired by a top-down kD-tree construction with SAH [Hav00];
our approach tries to minimize the L2 reconstruction error, while
the top-down kD-tree construction tries to minimize SAH.

Splitting Spectra. We explain the process of splitting a set of
spectra S ≡ {s ∈ Rn} into two subsets S1 and S2. We determine
the splitting plane perpendicular to each axis and compute the split-
ting position so that the sum of the L2 reconstruction error for each
subset is minimized. Given the splitting axis p ∈ {x,y} and the
splitting position v ∈ [0,1], the subsets S1 and S2 can be written as

S1(p,v) = {s ∈ S | c.p≥ v}, (10)

S2(p,v) = S\S1(i,v), (11)

where c.p returns x or y coordinates of the measured spectrum s in
the xyY color space according to the axis p. Using this definition,
the splitting axis and position is written as

(i∗,v∗) = argmin
i,v

(
∆E(S1(i,v))+∆E(S2(i,v))

)
. (12)

∆E(S) is the sum of the reconstruction error for a set of spectra S:

∆E(S) = ∑
s∈S
‖s− r‖2 , (13)

where r is obtained by using the approach described in the last
section with PCA over the subset S. We note that the splitting axis
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and position is only determined by the optimization process, thus
our approach does not depends on the starting condition.

At each leaf node, we store the basis functions, the conversion
matrix, and the mean values of the corresponding subset of spectra.
At runtime, we traverse the tree using the input tristimulus color and
select the corresponding leaf node to reconstruct the spectrum. Since
the reconstruction process still recovers input tristimulus colors, a
spectrum and a color has a bijective mapping. A set of reconstructed
spectra at each leaf node minimizes L2 errors as in Eq. 13.

5. Results

Setup. We used the two datasets of the matte Munsell color
chips [KPJ06]. The dataset I is a collection of 1269 measurements
ranging from 380 nm to 800 nm with 1 nm interval. The dataset
II is a collection of 1250 measurements ranging from 400 nm to
700 nm with 5 nm interval. The precomputation and the evaluation
are conducted respectively on the dataset I and II. The range of
the vertical axis is [0,1] for all the plots in this section unless other-
wise specified. The range of the horizontal axis is [380,730] nm or
[400,700] nm respectively for the results using the dataset I or II.
We integrated our method into a spectral rendering system based on
bidirectional path tracing [LW93, VG94]. All images are rendered
with equal time (1 hour) on the same environment. We conducted
all the experiments on a machine with an Intel Core i7-5960X at
3.0 GHz using 16 threads. Both the rendered images and visualized
colors are in the sRGB color space under the D65 illuminant. The
algorithm itself is independent of a choice of the color space and the
illuminant. We plan to distribute an implementation of our method.

Clustering of Measured Spectra. Fig. 5 shows the measured
spectra in each cluster for the dataset I. Fig. 6 visualizes the dis-
tribution of measured spectra and the clusters in the xy-plane for
the precomputation using the same dataset. We used eight clusters
so that the amount of precomputed data is roughly equal to that of
the method by Smits [Smi99]. We also experimentally verified that
the reconstruction error does not decrease much for the number of
clusters more than eight (Fig. 7).

We can observe that our algorithm successfully clusters spectra
that have similar shapes with different overall magnitudes. Ignoring
the magnitudes is desirable in our case since the reconstruction
via PCA will take care of overall scaling. Fig. 5 also shows the
corresponding three PCA basis functions at the bottom. Different
clusters have quite different basis functions, validating the use of
clustered PCA instead of PCA over an entire dataset.

Reconstructed Spectra. Fig. 8 and Fig. 9 compare several mea-
sured spectra [KPJ06] and reconstructed spectra by three different
methods; the method by Smits [Smi99] (blue line), the method by
Meng et al. [MSHD15] (green line), and ours (red line). The re-
ference RGB color is shown in the top left of each plot. We can
observe that the reconstructed spectra with our method match well
with the measured spectra in many cases. The two previous methods,
while producing metameric spectra like ours, result in very different
spectra. It is because real-world spectra are not simply characte-
rized as smooth in general, and a data-driven approach like ours
is necessary to capture more complex characteristics of real-world

Dataset Method ∆e Mean ∆e Med. ∆e Max.

I

Smits 0.1904 0.0819 1.8439
Meng et al. 0.1633 0.0710 1.1410

PCA only 0.0388 0.0156 0.9744
Ours 0.0138 0.0053 0.9875

II

Smits 0.1297 0.0633 1.1825
Meng et al. 0.1566 0.0985 1.0305

PCA only 0.0024 0.0014 0.0214
Ours 0.0022 0.0012 0.0220

Table 1: Reconstruction errors of the four reconstruction methods:
Smits [Smi99], Meng et al. [MSHD15], PCA without clustering,
and the proposed method. We show the mean, the median, and the
maximum of the reconstruction errors for each dataset computed
from the reference spectra. In almost all cases, our method is the
most accurate.

spectra. Our method is the first to achieve such results in compu-
ter graphics. Tab. 1 summarizes the reconstruction errors for each
reconstruction method. ∆e is the L2 reconstruction error for each
reference spectrum ‖s− r‖2. Our method outperforms the other
methods in terms of most metrics in the table.

We note that the purpose of our approach is to achieve a compact
representation of the spectrum based on the specific data and the
accurate recovery of the input color at the same time. In this sense,
because we are not focus on the reconstruction of the general reflec-
tance spectra, our approach can be considered as data compression
rather than learning. In other words, we do not focus on applying
the precomputed data to reconstruct the features in the different
datasets. This explains why, in our experiments, we evaluated the
reconstruction methods only with the precomputed data obtained
from the same dataset, instead of applying the precomputed data
obtained from the different dataset.

Fig. 10 highlights the importance of clustering, illustrating the
reconstructed spectra with and without clustering for the dataset
I. For the results without clustering, we just apply PCA over all
the measured spectra and use the same set of basis functions for
any input. While based on the same formulation via PCA (Eq. 8),
clustering dramatically improves the accuracy of reconstruction. We
found that similar approaches in color science [JMW∗64, Bri02,
WB04, MLBB08] are not significantly different from our PCA wit-
hout clustering in terms of error since they do not directly minimize
reconstruction error.

Rendering with Reconstructed Spectra. We tested the impor-
tance of reproducing of measured spectra in spectral rendering.
The scene shown in Fig. 1 is rendered with black-body illuminants
of 5500 K. All the materials except for the light source are Lam-
bertian with spectral reflectances. We also render a less naive
scene in Fig. 11. The scene is illuminated by black-body illumi-
nants of 4000 K and 5500 K. Several light sources casts indirect
lighting to the red wall. In both scenes, the top row shows the re-
sulting images using spectral reflectances produced by the methods
of Smits [Smi99], Meng et al. [MSHD15], and ours. The bottom
row visualizes per-pixel error from the reference rendering using
the measured spectra. We also show the error values (rRMSE) cor-
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Figure 8: Comparison of the reference spectrum (dotted) and the reconstructed spectra for the dataset I with the method by Smits [Smi99]
(blue), the method by Meng et al. [MSHD15] (green), and the proposed approach (red) as well as the RGB color represented by the reference
spectrum. All reconstructed spectra are converted from the tristimulus colors of the reference spectra.

Figure 9: Comparison of the reference and reconstructed spectra for the dataset II in similar configuration to Fig. 8.

respoinding to the error images. The color map next to the error
images is linear according to the error values because we compute
the errors before tone mapping. We determine the range of the color
map between zero and the threshold near the maximum error among
the images. The tristimulus color used for reconstruction is obtained
from the corresponding measured spectrum. We can observe that the
final color in the rendered images with the previous reconstruction
methods suffer from color shifts especially for the indirect illumina-
tion. This result implies that different metameric spectra can in fact
lead to visible differences because the reflectances are multiplied by
many times. This observation underlines the importance of accurate
reproduction of measured spectra.

We also show rendered images with different number of bounces
using the three different methods (Fig. 12). Similarly, we also show
the error images obtained by the comparison with the references
using the corresponding measured spectra for each path length. We
can observe the similar tendency that our method can generate the
better results.

Fig. 13 shows how the number of clusters affects the rendered
images. The bottom line shows the error compared to the reference
obtained with the measured spectra corresponding to the input tristi-
mulus color. Due to the inaccurate reconstruction, the rendered
image with a small number of clusters suffers from the color shift
compared to the reference. We can observe that the color shift can
be alleviated by adopting sufficient number of clusters.

6. Limitations

Reconstruction in Cluster Boundaries. Fig. 14 illustrates the
change of the reconstructed spectra in the cluster boundaries. The
left-most plot shows the xy plane with cluster boundaries. The sam-
pled points on each of lines (a) - (c) correspond to the set of the
spectra in the right three sets of spectra. Fig. 15 shows some ren-
dered images for the closest two samples in the lines (b) and (c)
within the difference of 10−5 in the value of x or y. Since our clus-
tering algorithm does not explicitly consider the continuity across
the boundaries, we found that the shapes of the spectra do not ne-
cessarily vary smoothly across the boundaries. For example, while
the cases (a) and (b) show smooth changes, the case (c) shows some
discontinuous changes in the shape of the spectrum. For the case
(c), the visual difference in the rendered images (Fig. 15, bottom) is
small, but noticeable for interreflection.

Reconstruction of Saturated Colors. To obtain physically plau-
sible results in spectral rendering, spectral reflectances must be
in the range of [0,1] for every wavelength. Our formulation using
PCA does not guarantee this property. That is, the reconstructed
spectrum can be less than zero or more than one at certain wave-
lengths. We thus need to clamp the output spectra to the range of
[0,1] to guarantee this property. Clamped spectra, however, may
not convert back to the input tristimulus color. Fig. 16 illustrates
some examples of the case. We reconstructed the spectrum from the
saturated colors, constraining each component of the RGB color to
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Figure 10: Comparison of the reconstructed spectra with (red) and without (blue) clustering for the dataset I. Similar to Fig. 8, we used the
measured spectra for the reference (dotted), and reconstructed them. We can observe that clustering improves the accuracy of reconstruction,
especially for longer wavelengths.

0.2

0.0

Error: 0.3082 Error: 0.2718 Error: 0.1532

Reference Smits Meng et al. Ours

Figure 11: Rendering using reconstructed spectral reflectances with a less naive scene. The scene contains Lambertian surfaces and
illuminated by black-body illuminants at 4000K and 5500K. Several light sources are placed behind the sofa. Similar to Fig. 1, we render
the images with three different methods and visualize the error images as well as the corresponding error values, compared to the reference
obtained with the measured spectra.

Dataset Method ∆e Mean ∆e Med. ∆e Max.

Glossy

Smits 0.0050 0.0023 0.0523
Meng et al. 0.0061 0.0028 0.0484

PCA only 0.0014 0.0006 0.0441
Ours 0.0006 0.0002 0.0455

Natural Colors

Smits 0.0057 0.0036 0.0643
Meng et al. 0.0054 0.0037 0.0602

PCA only 0.0027 0.0017 0.0285
Ours 0.0021 0.0013 0.0223

Table 2: Reconstruction errors of the four reconstruction methods
similar to Tab. 1 for the two different datasets: glossy and natural
colors [KPJ06].

either zero or one. The values of the spectra reconstructed from such
colors tend to be outside the range of [0,1]. Meng et al. [MSHD15]
pointed out that some colors are impossible to be represented within
the range of [0,1], and suggested some adjustment techniques to
produce physically plausible spectra in such cases. Since our formu-
lation intrinsically supports the XYZ color space, we can use their
technique.

We also visualize the ratio of the successful reconstruction in
the range of [0,1] in the xy-plane (Fig. 17). The region enclosed
by the solid line shows the range of visible chromacities and the
region enclosed by the dotted line shows the coutor line of the
measured spectra for the dataset I. The color map represents the
ratio of the successful reconstruction. The color is assigned for
each bin representing a small part in the xy-plane and the ratio is
estimated by computing the number of successful and unsuccessful
reconstructions for each bin. The red color means all reconstructed

spectra are in the range of [0,1] and the blue color represents the
spectra are outside the range of [0,1], or the visible region. We can
observe that the reconstruction succeeds in a large part of the domain
defined by the measurements yet fails in the outside of the domain.

The maximum error in Tab. 1 shows that there are cases where
our method still fails to reproduce measured spectra. We do not
claim that our method is capable of reproducing any natural spectra
since some natural spectra can have very different characteristics
than typical ones [WS00]. Our method is certainly not perfect and
metamerism may still occur if we consider all possible spectra. In
the paper, we tested our method with the measured spectra of Mun-
sell Matte color chips. While those spectra certainly do not represent
all the natural spectra, our method is still applicable when measured
spectra has a few degree of freedoms as was confirmed firmly in co-
lor science [Coh64,Mal86,FB04] for different datasets. Our method
thus can be seen as a general approach to find a compact and rever-
sible (in the sense that it recovers the input colors) representation of
a given measured spectra.

For example, if measured spectra for various metals are given
and we use the input color to specify the color of a metal, our
method reproduces spectra of various metals, not, Munsell Matte
color chips. Tab. 2 shows such examples where the reconstruction
errors are calculated for the two different datasets: glossy and natural
colors [KPJ06]. Our method indeed generates more accurate results
than the other existing methods even in these examples.

Reconstruction of General Spectra. Our method does not sup-
port spectra with intrinsic distributions such as the spectra measured
from the material with the fluorescence or the structural colors. For
such spectra, principle component analysis might not lead to an effi-
cient approximation. Our method does not directly support emission
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Figure 12: Rendering with different number of bounces using the spectra converted from the same tristimulus color with the three different
methods: the method by Smits [Smi99], the method by Meng et al. [MSHD15], and our method. As well as the rendered images we also show
error images and the error values correspoinding to the images. We note that, because we use different references for each column, the error
images and the error values are irrelevant with respect to the different number of path length, although we used the same error scale for the
visualization.

# of clusters: 1 # of clusters: 2 # of clusters: 4 # of clusters: 8

Error: 0.2396 Error: 0.1615 Error: 0.1342 Error: 0.0712 0.5

0.0

Figure 13: Rendered images using the reconstructed spectra from
the multiple number of clusters, converted from the same tristimulus
color. The top row shows the rendered images using the spectrum
with the corresponding number of clusters. The bottom row shows
the pixel-wised error compared to the reference rendered with the
original spectrum corresponding to the tristimulus color, as well as
the error values.

spectra either. One technique to use emission spectra within our
method is scaling down the input emission tristimulus color into
[0,1]3, converting it to an emission spectrum using our method, then
scaling up the resulting spectrum. This technique, however, is not
guaranteed at all to reproduce a measured emission spectrum with
the same emission tristimulus color.

(c)
(a)

(b)

(a) (b) (c)

Figure 14: Some sets of spectra across cluster boundaries. The left-
most plot is the xy plane with three different lines across the cluster
boundaries. The right three figures are corresponding reconstructed
spectra to the samples points on the lines. We assigned the different
line types (solid, dashes) for the spectra in the different clusters.

7. Conclusion

We introduced a novel method to reproduce spectral reflectances
from tristimulus colors. Our key idea is to use prior knowledge
on the actual measured spectra as studied in color science. Unlike
existing methods in computer graphics, the use of measured spectra
allows us to formulate the conversion process without smoothness
heuristics. Our formulation also clarifies that a similar formulation
in color science would have uncontrolled approximation error. In
order to address this problem, we proposed a clustering technique
to directly minimize the approximation error. At runtime, an input
tristimulus color is converted to a spectrum using the precomputed
basis functions and the conversion matrix to weights for those basis
functions. Our experiments demonstrate that the proposed method
can faithfully reproduce measured spectra without relying on exis-

submitted to COMPUTER GRAPHICS Forum (4/2018).



10 H. Otsu & M. Yamamoto & T. Hachisuka / Reproducing Spectral Reflectances from Tristimulus Colors

0.1

0.0
0.1

0.0

(c1)

(c2)

(b2)

(b1)

(b1) (b2)

(c1) (c2)

Figure 15: Rendered images using the reconstructed spectra with
the two consecutive colors for the lines (b) and (c) in Fig. 15. We
selected the consecutive colors so that the differences of x or y
values are within 10−5. We rendered the scene containing indirect
illumination with the spectral reflectances using two reconstructed
spectra from the two colors. The right-most images are the difference
of two images.

ting heuristics or heavy optimizations at runtime. We expect that
our method can be used for many different applications with spectral
data. In addition, since our work introduces the mapping between
RGB values a certain set of measured spectra, it might lead to more
accurate color reproduction in printing, given RGB images.
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Figure 16: Comparison of the reconstructed spectra for the saturated colors with the method by Smits (blue), the method by Meng et al.
(green), and our approach (red). We reconstructed the spectrum from the eight combinations of the saturated colors whose components of the
color are equal to one or zero. The dotted lines illustrates the range of [0,1]. The color plate in each plot shows the color converted from the
reference spectrum.
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Figure 17: Visualization of the ratio of the reconstructed spectra
in the range of [0,1] in the xy-plane. The solid line shows the region
of the visible spectra and the dotted line shows the contor line of
the measured spectra in the dataset I. We separated the xy-plane
into a set of small regions and assigned the color for each region
according to the estimated ratio of the spectra in the range.
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